PyLiPD User API
The following describes the main classes that makes up PyLiPD. Most users will only interface with the functionalies contained in these classes.
LiPD (pylipd.lipd.LiPD)
- class pylipd.lipd.LiPD(graph=None)[source]
The LiPD class describes a LiPD (Linked Paleo Data) object. It contains an RDF Graph which is serialization of the LiPD data into an RDF graph containing terms from the LiPD Ontology <http://linked.earth/Ontology/release/core/1.2.0/index-en.html> How to browse and query LiPD objects is described in a short example below.
Examples
In this example, we read an online LiPD file and convert it into a time series object dictionary.
from pylipd.lipd import LiPD lipd = LiPD() lipd.load(["https://lipdverse.org/data/LCf20b99dfe8d78840ca60dfb1f832b9ec/1_0_1//Nunalleq.Ledger.2018.lpd"]) ts_list = lipd.get_timeseries(lipd.get_all_dataset_names()) for dsname, tsos in ts_list.items(): for tso in tsos: if 'paleoData_variableName' in tso: print(dsname+': '+tso['paleoData_variableName']+': '+tso['archiveType'])
Loading 1 LiPD files
Loaded.. Extracting timeseries from dataset: Nunalleq.Ledger.2018 ... Nunalleq.Ledger.2018: depth: Archaeological Nunalleq.Ledger.2018: precipitation: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: precipitation: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: age: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: age: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: uncertaintyHigh: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: temperature: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: precipitation: Archaeological Nunalleq.Ledger.2018: temperature: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: uncertainty: Archaeological Nunalleq.Ledger.2018: temperature: Archaeological Nunalleq.Ledger.2018: temperature: Archaeological Nunalleq.Ledger.2018: precipitation: Archaeological Nunalleq.Ledger.2018: uncertaintyLow: Archaeological Nunalleq.Ledger.2018: temperature: Archaeological Nunalleq.Ledger.2018: temperature: Archaeological Nunalleq.Ledger.2018: temperature: Archaeological Nunalleq.Ledger.2018: precipitation: Archaeological Nunalleq.Ledger.2018: temperature: Archaeological
Methods
clear
()Clears the graph
convert_lipd_dir_to_rdf
(lipd_dir, rdf_file)Convert a directory containing LiPD files into a single RDF file (to be used for uploading to Knowledge Bases like GraphDB)
copy
()Makes a copy of the object
create_lipd
(dsname, lipdfile)Create LiPD file for a dataset
filter_by_archive_type
(archiveType)Filters datasets to return a new LiPD object that only keeps datasets that have the specified archive type
filter_by_geo_bbox
(lonMin, latMin, lonMax, ...)Filters datasets to return a new LiPD object that only keeps datasets that fall within the bounding box
filter_by_time
(timeBound[, timeBoundType, ...])Filter the records according to a specified time interval and the length of the record within that interval.
get
(dsnames)Gets dataset(s) from the graph and returns the popped LiPD object
Returns a list of all the unique archiveTypes present in the LiPD object
Get all Dataset ids
Get all Dataset Names
get_all_graph_ids
()Get all Graph ids
get_all_locations
([dsname])Return geographical coordinates for all the datasets.
Get a list of all possible distinct variableNames.
Returns a list of all variables in the graph
get_bibtex
([remote, save, path, verbose])Get BibTeX for loaded datasets
Get a list of unique properties attached to a dataset.
Return datasets as instances of the Dataset class
get_ensemble_tables
([dsname, ...])Gets ensemble tables from the LiPD graph
get_lipd
(dsname)Get LiPD json for a dataset
Get all the properties associated with a model
get_timeseries
(dsnames[, to_dataframe, ...])Get Legacy LiPD like Time Series Object (tso)
get_timeseries_essentials
([dsnames, mode])Returns specific properties for timeseries: 'dataSetName', 'archiveType', 'geo_meanLat', 'geo_meanLon',
Get a list of variable properties that can be used for querying
load
(lipdfiles[, parallel, standardize, ...])Load LiPD files.
load_datasets
(datasets)Loads instances of Dataset class into the LiPD graph
load_from_dir
(dir_path[, parallel, cutoff, ...])Load LiPD files from a directory
load_remote_datasets
(dsnames[, ...])Loads remote datasets into cache if a remote endpoint is set
merge
(rdf)Merges the current LiPD object with another LiPD object
pop
(dsnames)Pops dataset(s) from the graph and returns the popped LiPD object
query
(query[, remote, result])Once data is loaded into the graph (or remote endpoint set), one can make SparQL queries to the graph
remove
(dsnames)Removes dataset(s) from the graph
serialize
()Returns RDF quad serialization of the current combined Graph .
set_endpoint
(endpoint)Sets a SparQL endpoint for a remote Knowledge Base (example: GraphDB)
to_lipd_series
([parallel])Converts the LiPD object to a LiPDSeries object
update_remote_datasets
(dsnames)Updates local LiPD Graph for datasets to remote endpoint
- convert_lipd_dir_to_rdf(lipd_dir, rdf_file, parallel=False, standardize=True, add_labels=False)[source]
Convert a directory containing LiPD files into a single RDF file (to be used for uploading to Knowledge Bases like GraphDB)
- Parameters:
lipd_dir (str) – Path to the directory containing lipd files
rdf_file (str) – Path to the output rdf file
- create_lipd(dsname, lipdfile)[source]
Create LiPD file for a dataset
- Parameters:
dsname (str) – dataset id
lipdfile (str) – path to LiPD file
- Returns:
lipdjson – LiPD json
- Return type:
dict
Examples
from pylipd.lipd import LiPD # Load a local file lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", ]) dsname = lipd.get_all_dataset_names()[0] lipd.create_lipd(dsname, "test.lpd")
Loading 1 LiPD files
Loaded..
{'dataContributor': {'name': 'Wu KLD'}, 'originalDataURL': 'https://www.ncdc.noaa.gov/paleo/study/1866', 'changelog': {'curator': 'nicholas', 'timestamp': datetime.date(2022, 8, 23), 'notes': 'Starting the changelog', 'version': '1.0.0'}, 'studyName': 'Madang, Papua New Guinea oxygen isotope record 1880-1993', 'paleoData': [{'measurementTable': [{'tableName': 'Kuhnert', 'googleWorkSheetKey': 'ov9tjw6', 'filename': 'Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.paleo1measurement1.csv', 'columns': [{'TSid': 'Ocean2kHR_140', 'proxyObservationType': 'd18O', 'wDSPaleoUrl': 'https://www1.ncdc.noaa.gov/pub/data/paleo/pages2k/pages2k-temperature-v2-2017/data-version-2.0.0/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.txt', 'measurementTableName': 'measurementTable1', 'hasMeanValue': -4.9453, 'hasMedianValue': -4.942, 'resolution': {'hasMinValue': 0.25, 'hasMeanValue': 0.25, 'hasMaxValue': 0.25, 'hasMedianValue': 0.25, 'units': 'yr AD'}, 'hasMaxValue': -4.344, 'useInGlobalTemperatureAnalysis': True, 'notes': '; climateInterpretation_seasonality changed - was originally seasonal', 'variableName': 'd18O', 'interpretation': [{'variableDetail': 'sea@surface', 'scope': 'climate', 'direction': 'negative', 'seasonality': 'subannual', 'variable': 'temperature'}], 'measurementTableMD5': '793853407e414221c486d2e63b32dd87', 'inCompilationBeta': {'compilationName': 'Pages2kTemperature', 'compilationVersion': '2_1_1'}, 'variableType': 'measured', 'qCCertification': 'KLD, NJA', 'ocean2kID': 'PacificMadangTudhope2001', 'sensorGenus': 'Porites', 'number': 1, 'pages2kID': 'Ocn_097', 'hasArchiveType': {'label': 'Coral'}, 'hasMinValue': -5.515, 'paleoDataTableName': 'measTable', 'iso2kUI': 'CO01TUNG01A', 'units': 'permil', 'proxy': 'd18O'}, {'inferredVariableType': 'Year', 'hasMaxValue': 1993.042, 'hasArchiveType': {'label': 'Coral'}, 'TSid': 'PYTDAS7AM1Y', 'wDSPaleoUrl': 'https://www1.ncdc.noaa.gov/pub/data/paleo/pages2k/pages2k-temperature-v2-2017/data-version-2.0.0/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.txt', 'variableType': 'inferred', 'measurementTableName': 'measurementTable1', 'number': 2, 'description': 'Year AD', 'variableName': 'year', 'hasMinValue': 1880.792, 'hasMedianValue': 1936.917, 'resolution': {'hasMedianValue': 0.25, 'hasMinValue': 0.25, 'hasMeanValue': 0.25, 'hasMaxValue': 0.25, 'units': 'yr AD'}, 'dataType': 'float', 'measurementTableMD5': '793853407e414221c486d2e63b32dd87', 'hasMeanValue': 1936.917, 'paleoDataTableName': 'measTable', 'units': 'yr AD'}], 'missingValue': 'NaN'}]}], 'googleMetadataWorksheet': 'oruuxfm', 'googleSpreadSheetKey': '1wf30P-s54OTBdLw4dyeaIN53VDoN0u_hOqIwvAeLxtc', 'dataSetName': 'Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'inCompilation1_': 'Ocean2k_v1.0.0', 'minYear': 1880.792, 'datasetId': 'm8yv2VgG97zJmSg3XhqQ', 'inCompilation3_': 'PAGES2k_v2.1.0', 'geo': {'geometry': {'coordinates': [145.8167, -5.2167, -2.2], 'type': 'Point'}, 'properties': {'siteName': 'Madang Lagoon, Papua New Guinea', 'ocean': 'Pacific', 'type': 'http://linked.earth/ontology#Location', 'pages2kRegion': 'Ocean'}}, 'inCompilation2_': 'PAGES2k_v2.0.0', 'googleDataURL': 'https://docs.google.com/spreadsheets/d/1wf30P-s54OTBdLw4dyeaIN53VDoN0u_hOqIwvAeLxtc', 'pub': [{'author': [{'name': 'A. W. Tudhope'}], 'journal': 'Science', 'title': 'Variability in the El Nino-Southern Oscillation Through a Glacial-Interglacial Cycle', 'pages': '1511-1517', 'publisher': 'American Association for the Advancement of Science (AAAS)', 'dataUrl': ['doi.org'], 'issue': 5508.0, 'year': 2001, 'volume': '291', 'citeKey': 'tudhope2001variabilityintheelninosou', 'doi': '10.1126/science.1057969'}, {'author': [{'name': 'H. Kuhnert'}], 'citeKey': 'kuhnert2001httpswwwncdcnoaagovpaleostudy1866DataCitation', 'url': ['https://www.ncdc.noaa.gov/paleo/study/1866'], 'urldate': 2001.0, 'title': 'World Data Center for Paleoclimatology', 'institution': 'World Data Center for Paleoclimatology'}, {'author': [{'name': 'Henry C. Wu'}, {'name': 'Jens Zinke'}, {'name': 'K. Halimeda Kilbourne'}, {'name': 'Cyril Giry'}, {'name': 'Nerilie J. Abram'}, {'name': 'Casey P. Saenger'}, {'name': 'Jessica E. Tierney'}, {'name': 'Kevin J. Anchukaitis'}, {'name': 'Michael N. Evans'}], 'title': 'Tropical sea surface temperatures for the past four centuries reconstructed from coral archives', 'pages': '226-252', 'dataUrl': ['doi.org'], 'year': 2015, 'volume': '30', 'issue': 3.0, 'citeKey': 'tierney2015tropicalseasurfacetempera', 'publisher': 'Wiley-Blackwell', 'doi': '10.1002/2014PA002717', 'journal': 'Paleoceanography'}], 'maxYear': 1993.042, 'hasUrl': 'https://data.mint.isi.edu/files/lipd/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd', 'lipdVersion': 1.3, 'createdBy': 'matlab', 'archiveType': 'Coral'}
- filter_by_archive_type(archiveType)[source]
Filters datasets to return a new LiPD object that only keeps datasets that have the specified archive type
- Parameters:
archiveType (str) – The archive type to filter by
- Returns:
A new LiPD object that only contains datasets that have the specified archive type (regex)
- Return type:
Examples
pyLipd ships with existing datasets that can be loaded directly through the package. Let’s load the Pages2k sample datasets using this method.
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') Lfiltered = lipd.filter_by_archive_type('marine') Lfiltered.get_all_dataset_names()
Loading 16 LiPD files
Loaded..
['Ocn-AlboranSea436B.Nieto-Moreno.2013', 'Ocn-FeniDrift.Richter.2009', 'Eur-CoastofPortugal.Abrantes.2011']
- filter_by_geo_bbox(lonMin, latMin, lonMax, latMax)[source]
Filters datasets to return a new LiPD object that only keeps datasets that fall within the bounding box
- Parameters:
lonMin (float) – Minimum longitude
latMin (float) – Minimum latitude
lonMax (float) – Maximum longitude
latMax (float) – Maximum latitude
- Returns:
A new LiPD object that only contains datasets that fall within the bounding box
- Return type:
Examples
pyLipd ships with existing datasets that can be loaded directly through the package. Let’s load the Pages2k sample datasets using this method.
from pylipd.utils.dataset import load_dir lipd = load_dir() Lfiltered = lipd.filter_by_geo_bbox(0,25,50,50) Lfiltered.get_all_dataset_names()
Loading 16 LiPD files
Loaded..
['Ocn-RedSea.Felis.2000', 'Eur-SpannagelCave.Mangini.2005', 'Eur-SpanishPyrenees.Dorado-Linan.2012', 'Eur-LakeSilvaplana.Trachsel.2010', 'Ocn-SinaiPeninsula_RedSea.Moustafa.2000']
- filter_by_time(timeBound, timeBoundType='any', recordLength=None)[source]
Filter the records according to a specified time interval and the length of the record within that interval. Note that this function assumes that all records use the same time representation.
If you are unsure about the time representation, you may need to use .get_timeseries_essentials.
- Parameters:
timeBound (list) – Minimum and Maximum age value to search for.
timeBoundType (str, optional) – The type of querying to perform. Possible values include: “any”, “entire”, and “entirely”. - any: Overlap any portions of matching datasets (default) - entirely: are entirely overlapped by matching datasets - entire: overlap entire matching datasets but dataset can be shorter than the bounds The default is ‘any’.
recordLength (float, optional) – The minimum length the record needs to have while matching the ageBound criteria. The default is None.
- Raises:
ValueError – timeBoundType must take the values in [“any”, “entire”, and “entirely”]
- Returns:
A new LiPD object that only contains datasets that have the specified time interval
- Return type:
Examples
pyLipd ships with existing datasets that can be loaded directly through the package. Let’s load the Pages2k sample datasets using this method.
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') Lfiltered = lipd.filter_by_time(timeBound=[0,1800]) Lfiltered.get_all_dataset_names()
Loading 16 LiPD files
Loaded..
['Ocn-AlboranSea436B.Nieto-Moreno.2013', 'Ant-WAIS-Divide.Severinghaus.2012', 'Asi-SourthAndMiddleUrals.Demezhko.2007', 'Ocn-RedSea.Felis.2000', 'Eur-SpannagelCave.Mangini.2005', 'Eur-SpanishPyrenees.Dorado-Linan.2012', 'Eur-NorthernSpain.Martin-Chivelet.2011', 'Eur-NorthernScandinavia.Esper.2012', 'Ocn-FeniDrift.Richter.2009', 'Eur-Stockholm.Leijonhufvud.2009', 'Eur-CoastofPortugal.Abrantes.2011', 'Eur-FinnishLakelands.Helama.2014', 'Eur-LakeSilvaplana.Trachsel.2010']
- get(dsnames)[source]
Gets dataset(s) from the graph and returns the popped LiPD object
- Parameters:
dsnames (str or list of str) – dataset name(s) to get.
- Returns:
LiPD object with the retrieved dataset(s)
- Return type:
Examples
from pylipd.lipd import LiPD # Load LiPD files from a local directory lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", "../examples/data/MD98_2181.Stott.2007.lpd" ]) all_datasets = lipd.get_all_dataset_names() print("Loaded datasets: " + str(all_datasets)) ds = lipd.get(all_datasets[0]) print("Got dataset: " + str(ds.get_all_dataset_names()))
Loading 2 LiPD files
Loaded.. Loaded datasets: ['Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'MD98_2181.Stott.2007'] Got dataset: ['Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001']
- get_all_archiveTypes()[source]
Returns a list of all the unique archiveTypes present in the LiPD object
- Returns:
A list of archiveTypes
- Return type:
list
Examples
from pylipd.lipd import LiPD # Load Local files lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", "../examples/data/MD98_2181.Stott.2007.lpd" ]) print(lipd.get_all_archiveTypes())
Loading 2 LiPD files
Loaded.. ['Coral', 'Marine sediment']
- get_all_dataset_ids()[source]
Get all Dataset ids
- Returns:
dsids (list)
A list of datasetnames
Examples
from pylipd.lipd import LiPD # Load local files lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", "../examples/data/MD98_2181.Stott.2007.lpd" ]) print(lipd.get_all_dataset_ids())
Loading 2 LiPD files
Loaded.. ['m8yv2VgG97zJmSg3XhqQ', 't0E8pOLYdyzmUspGZwbe']
- get_all_dataset_names()[source]
Get all Dataset Names
- Returns:
dsnames (list)
A list of datasetnames
Examples
from pylipd.lipd import LiPD # Load local files lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", "../examples/data/MD98_2181.Stott.2007.lpd" ]) print(lipd.get_all_dataset_names())
Loading 2 LiPD files
Loaded.. ['Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'MD98_2181.Stott.2007']
- get_all_locations(dsname=None)[source]
Return geographical coordinates for all the datasets.
- Parameters:
dsname (str, optional) – The name of the dataset for which to return the timeseries information. The default is None.
- Returns:
df – A pandas dataframe returning the latitude, longitude and elevation for each dataset
- Return type:
pandas.DataFrame
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') df = lipd.get_all_locations() print(df)
Loading 16 LiPD files
Loaded.. dataSetName geo_meanLat geo_meanLon \ 0 Eur-CoastofPortugal.Abrantes.2011 41.1000 -8.9000 1 Eur-NorthernScandinavia.Esper.2012 68.0000 25.0000 2 Asi-SourthAndMiddleUrals.Demezhko.2007 55.0000 59.5000 3 Arc-Kongressvatnet.D'Andrea.2012 78.0217 13.9311 4 Ocn-RedSea.Felis.2000 27.8500 34.3200 5 Ant-WAIS-Divide.Severinghaus.2012 -79.4630 -112.1250 6 Ocn-FeniDrift.Richter.2009 55.5000 -13.9000 7 Ocn-AlboranSea436B.Nieto-Moreno.2013 36.2053 -4.3133 8 Eur-NorthernSpain.Martin-Chivelet.2011 42.9000 -3.5000 9 Ocn-PedradeLume-CapeVerdeIslands.Moses.2006 16.7600 -22.8883 10 Eur-SpannagelCave.Mangini.2005 47.1000 11.6000 11 Eur-SpanishPyrenees.Dorado-Linan.2012 42.5000 1.0000 12 Eur-Stockholm.Leijonhufvud.2009 59.3200 18.0600 13 Eur-FinnishLakelands.Helama.2014 62.0000 28.3250 14 Ocn-SinaiPeninsula,RedSea.Moustafa.2000 27.8483 34.3100 15 Eur-LakeSilvaplana.Trachsel.2010 46.5000 9.8000 geo_meanElev 0 -80.0 1 300.0 2 1900.0 3 94.0 4 -6.0 5 1766.0 6 -2543.0 7 -1108.0 8 1250.0 9 -5.0 10 2347.0 11 1200.0 12 10.0 13 130.0 14 -3.0 15 1791.0
- get_all_variable_names()[source]
Get a list of all possible distinct variableNames. Useful for filtering and qeurying.
- Returns:
A list of unique variableName
- Return type:
list
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') varName = lipd.get_all_variable_names() print(varName)
Loading 16 LiPD files
Loaded.. ['year', 'temperature', 'MXD', 'Uk37', 'd18O', 'uncertainty_temperature', 'Mg_Ca', 'notes', 'depth_bottom', 'depth_top', 'trsgi']
- get_all_variables()[source]
Returns a list of all variables in the graph
- Returns:
A dataframe of all variables in the graph with columns uri, varid, varname
- Return type:
pandas.DataFrame
Examples
from pylipd.lipd import LiPD lipd = LiPD() lipd.load([ "../examples/data/ODP846.Lawrence.2006.lpd" ]) df = lipd.get_all_variables() print(df)
Loading 1 LiPD files
Loaded.. uri TSID \ 0 http://linked.earth/lipd/chron0model0summary0.... PYTDIEKUM44 1 http://linked.earth/lipd/chron0model0summary0.... PYT7DLYN7X4 2 http://linked.earth/lipd/chron0model0ensemble0... PYTUHE3XLGQ 3 http://linked.earth/lipd/paleo0measurement0.PY... PYTXJB98403 4 http://linked.earth/lipd/chron0measurement0.PY... PYTTD7XCQGS 5 http://linked.earth/lipd/paleo0measurement0.PY... PYTKRFVW61B 6 http://linked.earth/lipd/chron0measurement0.PY... PYT9CFQ4GK0 7 http://linked.earth/lipd/chron0model0ensemble0... PYTGOFY4KZD 8 http://linked.earth/lipd/paleo0measurement1.PY... PYTS96EE0CB 9 http://linked.earth/lipd/chron0model0summary0.... PYTPWX0LH3I 10 http://linked.earth/lipd/paleo0model0ensemble0... PYTCHXB40SL 11 http://linked.earth/lipd/paleo0measurement0.PY... PYT10H23U2E 12 http://linked.earth/lipd/chron0model0summary0.... PYTI487BQDZ 13 http://linked.earth/lipd/paleo0measurement0.PY... PYT95DVDUU3 14 http://linked.earth/lipd/paleo0measurement0.PY... PYTGO6NV72Y 15 http://linked.earth/lipd/paleo0measurement0.PY... PYT2ZB6MLZ9 16 http://linked.earth/lipd/paleo0measurement1.PY... PYTYDOYFVYD 17 http://linked.earth/lipd/chron0measurement0.PY... PYTLEHYPAYV 18 http://linked.earth/lipd/paleo0measurement0.PY... PYT8BDSRW3H 19 http://linked.earth/lipd/paleo0measurement1.PY... PYT68HYMYHH 20 http://linked.earth/lipd/paleo0measurement0.PY... PYTJ3PSH0LT 21 http://linked.earth/lipd/paleo0measurement1.PY... PYTE5EC1JBW 22 http://linked.earth/lipd/paleo0model0ensemble0... PYTDW6AIJPW 23 http://linked.earth/lipd/paleo0measurement0.PY... PYTM9N6HCQM 24 http://linked.earth/lipd/paleo0measurement1.PY... PYTTUPVG4K3 25 http://linked.earth/lipd/paleo0measurement1.PY... PYT19MC8WE2 26 http://linked.earth/lipd/paleo0measurement1.PY... PYTJZ4GLRYP 27 http://linked.earth/lipd/chron0model0summary0.... PYT4Y96QMUU 28 http://linked.earth/lipd/paleo0measurement1.PY... PYT3ZMI0BXW 29 http://linked.earth/lipd/paleo0measurement1.PY... PYTPQ0FJO1S variableName 0 upper95 1 median 2 age 3 age 4 age 5 depth 6 depth 7 depth 8 depth 9 depth 10 depth 11 c37 total 12 lower95 13 temp prahl 14 temp muller 15 interval 16 u. peregrina d18o 17 d18o 18 section 19 depth cr 20 site/hole 21 event 22 sst 23 ukprime37 24 u. peregrina d13c 25 c. wuellerstorfi d13c 26 sample label 27 d180 28 c. wuellerstorfi d18o 29 depth comp
- get_bibtex(remote=True, save=True, path='mybiblio.bib', verbose=False)[source]
Get BibTeX for loaded datasets
- Parameters:
remote (bool) – (Optional) If set to True, will return the bibliography by checking against the DOI
save (bool) – (Optional) Whether to save the bibliography to a file
path (str) – (Optional) Path where to save the file
verbose (bool) – (Optional) Whether to print out on the console. Note that this option will turn on automatically if saving to a file fails.
- Returns:
bibs (list) – List of BiBTex entry
df (pandas.DataFrame) – Bibliography information in a Pandas DataFrame
Examples
from pylipd.lipd import LiPD # Fetch LiPD data from remote RDF Graph lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", "../examples/data/MD98_2181.Stott.2007.lpd" ]) print(lipd.get_bibtex(save=False))
Loading 2 LiPD files
Loaded..
Cannot find a matching record for the provided DOI (None), creating the entry manually
([' @article{Tierney_2015, title={Tropical sea surface temperatures for the past four centuries reconstructed from coral archives}, volume={30}, ISSN={1944-9186}, url={http://dx.doi.org/10.1002/2014PA002717}, DOI={10.1002/2014pa002717}, number={3}, journal={Paleoceanography}, publisher={American Geophysical Union (AGU)}, author={Tierney, Jessica E. and Abram, Nerilie J. and Anchukaitis, Kevin J. and Evans, Michael N. and Giry, Cyril and Kilbourne, K. Halimeda and Saenger, Casey P. and Wu, Henry C. and Zinke, Jens}, year={2015}, month=mar, pages={226–252} }\n', ' @article{Tudhope_2001, title={Variability in the El Niño-Southern Oscillation Through a Glacial-Interglacial Cycle}, volume={291}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1057969}, DOI={10.1126/science.1057969}, number={5508}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Tudhope, Alexander W. and Chilcott, Colin P. and McCulloch, Malcolm T. and Cook, Edward R. and Chappell, John and Ellam, Robert M. and Lea, David W. and Lough, Janice M. and Shimmield, Graham B.}, year={2001}, month=feb, pages={1511–1517} }\n', '@misc{kuhnert2001httpswwwncdcnoaagovpaleostudy1866DataCitation,\n author = "H. Kuhnert",\n title = "World Data Center for Paleoclimatology",\n institution = "World Data Center for Paleoclimatology",\n url = "https://www.ncdc.noaa.gov/paleo/study/1866"\n}\n', ' @article{Stott_2007, title={Comment on “Anomalous radiocarbon ages for foraminifera shells” by W. Broecker et al.: A correction to the western tropical Pacific MD9821‐81 record}, volume={22}, ISSN={1944-9186}, url={http://dx.doi.org/10.1029/2006PA001379}, DOI={10.1029/2006pa001379}, number={1}, journal={Paleoceanography}, publisher={American Geophysical Union (AGU)}, author={Stott, Lowell D.}, year={2007}, month=feb }\n', ' @article{Stott_2007, title={Southern Hemisphere and Deep-Sea Warming Led Deglacial Atmospheric CO\n 2\n Rise and Tropical Warming}, volume={318}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1143791}, DOI={10.1126/science.1143791}, number={5849}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Stott, Lowell and Timmermann, Axel and Thunell, Robert}, year={2007}, month=oct, pages={435–438} }\n'], dsname \ 0 Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001 1 Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001 2 Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001 3 MD98_2181.Stott.2007 4 MD98_2181.Stott.2007 title \ 0 Tropical sea surface temperatures for the past... 1 Variability in the El Nino-Southern Oscillatio... 2 World Data Center for Paleoclimatology 3 None 4 Southern Hemisphere and deep-sea warming led d... authors doi \ 0 Cyril Giry and Nerilie J. Abram and Casey P. S... 10.1002/2014PA002717 1 A. W. Tudhope 10.1126/science.1057969 2 H. Kuhnert None 3 10.1029/2006PA001379 4 L. Stott and A. Timmermann and R. Thunell 10.1126/science.1143791 pubyear year journal volume issue pages \ 0 None 2015.0 Paleoceanography 30 3.0 226-252 1 None 2001.0 Science 291 5508.0 1511-1517 2 None NaN None None NaN None 3 None NaN None None NaN None 4 None 2007.0 Science 318 5849.0 435 438 type publisher report \ 0 journal-article Wiley-Blackwell None 1 journal-article American Association for the Advancement of Sc... None 2 dataCitation None None 3 None None None 4 None None None citeKey edition \ 0 tierney2015tropicalseasurfacetempera None 1 tudhope2001variabilityintheelninosou None 2 kuhnert2001httpswwwncdcnoaagovpaleostudy1866Da... None 3 None None 4 WMGAVB7S None institution url \ 0 None None 1 None None 2 World Data Center for Paleoclimatology None 3 None None 4 None None url2 0 None 1 None 2 https://www.ncdc.noaa.gov/paleo/study/1866 3 None 4 None )
- get_dataset_properties()[source]
Get a list of unique properties attached to a dataset.
Note: Some properties will return another object (e.g., ‘publishedIn’ will give you a Publication object with its own properties) Note: Not all datasets will have the same available properties (i.e., not filled in by a user)
- Returns:
clean_list – A list of avialable properties that can queried
- Return type:
list
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir(name='Pages2k') dataset_properties = lipd.get_dataset_properties() print(dataset_properties)
Loading 16 LiPD files
Loaded.. ['hasName', 'hasUrl', 'hasSpreadsheetLink', 'lipdVersion', 'googleMetadataWorksheet', 'hasLocation', 'maxYear', 'hasPublication', 'hasDatasetId', 'googleDataURL', 'minYear', 'type', 'hasOriginalDataUrl', 'hasArchiveType', 'createdBy', 'hasChangeLog', 'hasPaleoData', 'inCompilation2_', 'inCompilation3_', 'inCompilation1_', 'hasContributor', 'studyName', 'hasInvestigator', 'hasNotes', 'hasFunding']
- get_datasets() list[Dataset] [source]
Return datasets as instances of the Dataset class
- Returns:
A list of Dataset objects
- Return type:
list of pylipd.classes.Dataset
Examples
pyLipd ships with existing datasets that can be loaded directly through the package. Let’s load the Pages2k sample datasets using this method.
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') lipd.get_datasets()
Loading 16 LiPD files
Loaded..
[<pylipd.classes.dataset.Dataset at 0x7fd9c59f90c0>, <pylipd.classes.dataset.Dataset at 0x7fd9cbff37c0>, <pylipd.classes.dataset.Dataset at 0x7fd9d0c8b130>, <pylipd.classes.dataset.Dataset at 0x7fd9d0c8a290>, <pylipd.classes.dataset.Dataset at 0x7fd9d0c88520>, <pylipd.classes.dataset.Dataset at 0x7fd9d09b64d0>, <pylipd.classes.dataset.Dataset at 0x7fd9d0c8b040>, <pylipd.classes.dataset.Dataset at 0x7fd9d1088610>, <pylipd.classes.dataset.Dataset at 0x7fd9cbff11b0>, <pylipd.classes.dataset.Dataset at 0x7fd9cbff3f70>, <pylipd.classes.dataset.Dataset at 0x7fd9d0af0160>, <pylipd.classes.dataset.Dataset at 0x7fd9cbff16f0>, <pylipd.classes.dataset.Dataset at 0x7fd9d0c8bf70>, <pylipd.classes.dataset.Dataset at 0x7fd9d0f84d30>, <pylipd.classes.dataset.Dataset at 0x7fd9d0c8bee0>, <pylipd.classes.dataset.Dataset at 0x7fd9d14f6ef0>]
- get_ensemble_tables(dsname=None, ensembleVarName=None, ensembleDepthVarName='depth')[source]
Gets ensemble tables from the LiPD graph
- Parameters:
dsname (str) – The name of the dataset if you wish to analyse one at a time (Set to “.*” to match all datasets with a common root)
ensembleVarName (None or str) – ensemble variable name. Default is None, which searches for names that contain “year” or “age” (Set to “.*” to match all ensemble variable names)
ensembleDepthVarName (str) – ensemble depth variable name. Default is ‘depth’ (Set to “.*” to match all ensemble depth variable names)
- Returns:
ensemble_tables – A dataframe containing the ensemble tables
- Return type:
dataframe
Examples
from pylipd.lipd import LiPD lipd = LiPD() lipd.load([ "../examples/data/ODP846.Lawrence.2006.lpd" ]) all_datasets = lipd.get_all_dataset_names() print("Loaded datasets: " + str(all_datasets)) ens_df = lipd.get_ensemble_tables( ensembleVarName="age", ensembleDepthVarName="depth" ) print(ens_df)
Loading 1 LiPD files
Loaded.. Loaded datasets: ['ODP846.Lawrence.2006']
datasetName ensembleTable \ 0 ODP846.Lawrence.2006 http://linked.earth/lipd/chron0model0ensemble0 ensembleVariableName ensembleVariableValues \ 0 age [[4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0,... ensembleVariableUnits ensembleDepthName \ 0 kyr BP depth ensembleDepthValues ensembleDepthUnits notes \ 0 [0.12, 0.23, 0.33, 0.43, 0.53, 0.63, 0.73, 0.8... m None methodobj methods 0 None None
- get_lipd(dsname)[source]
Get LiPD json for a dataset
- Parameters:
dsname (str) – dataset id
- Returns:
lipdjson – LiPD json
- Return type:
dict
Examples
from pylipd.lipd import LiPD # Load a local LiPD file lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", ]) lipd_json = lipd.get_lipd(lipd.get_all_dataset_names()[0]) print(lipd_json)
Loading 1 LiPD files
Loaded.. {'dataContributor': {'name': 'Wu KLD'}, 'originalDataURL': 'https://www.ncdc.noaa.gov/paleo/study/1866', 'changelog': {'curator': 'nicholas', 'timestamp': datetime.date(2022, 8, 23), 'notes': 'Starting the changelog', 'version': '1.0.0'}, 'pub': [{'issue': 3.0, 'author': [{'name': 'Nerilie J. Abram'}, {'name': 'Jessica E. Tierney'}, {'name': 'Kevin J. Anchukaitis'}, {'name': 'Michael N. Evans'}, {'name': 'K. Halimeda Kilbourne'}, {'name': 'Henry C. Wu'}, {'name': 'Jens Zinke'}, {'name': 'Casey P. Saenger'}, {'name': 'Cyril Giry'}], 'citeKey': 'tierney2015tropicalseasurfacetempera', 'journal': 'Paleoceanography', 'title': 'Tropical sea surface temperatures for the past four centuries reconstructed from coral archives', 'publisher': 'Wiley-Blackwell', 'doi': '10.1002/2014PA002717', 'year': 2015, 'pages': '226-252', 'volume': '30', 'dataUrl': ['doi.org']}, {'institution': 'World Data Center for Paleoclimatology', 'title': 'World Data Center for Paleoclimatology', 'citeKey': 'kuhnert2001httpswwwncdcnoaagovpaleostudy1866DataCitation', 'url': ['https://www.ncdc.noaa.gov/paleo/study/1866'], 'author': [{'name': 'H. Kuhnert'}], 'urldate': 2001.0}, {'year': 2001, 'volume': '291', 'doi': '10.1126/science.1057969', 'citeKey': 'tudhope2001variabilityintheelninosou', 'author': [{'name': 'A. W. Tudhope'}], 'dataUrl': ['doi.org'], 'journal': 'Science', 'title': 'Variability in the El Nino-Southern Oscillation Through a Glacial-Interglacial Cycle', 'publisher': 'American Association for the Advancement of Science (AAAS)', 'issue': 5508.0, 'pages': '1511-1517'}], 'studyName': 'Madang, Papua New Guinea oxygen isotope record 1880-1993', 'paleoData': [{'measurementTable': [{'tableName': 'Kuhnert', 'googleWorkSheetKey': 'ov9tjw6', 'filename': 'Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.paleo1measurement1.csv', 'columns': [{'inferredVariableType': 'Year', 'hasMaxValue': 1993.042, 'hasArchiveType': {'label': 'Coral'}, 'TSid': 'PYTDAS7AM1Y', 'wDSPaleoUrl': 'https://www1.ncdc.noaa.gov/pub/data/paleo/pages2k/pages2k-temperature-v2-2017/data-version-2.0.0/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.txt', 'variableType': 'inferred', 'measurementTableName': 'measurementTable1', 'number': 2, 'description': 'Year AD', 'variableName': 'year', 'hasMinValue': 1880.792, 'hasMedianValue': 1936.917, 'resolution': {'hasMedianValue': 0.25, 'hasMinValue': 0.25, 'hasMeanValue': 0.25, 'hasMaxValue': 0.25, 'units': 'yr AD'}, 'dataType': 'float', 'measurementTableMD5': '793853407e414221c486d2e63b32dd87', 'hasMeanValue': 1936.917, 'paleoDataTableName': 'measTable', 'units': 'yr AD', 'values': [1993.042, 1992.792, 1992.542, 1992.292, 1992.042, 1991.792, 1991.542, 1991.292, 1991.042, 1990.792, 1990.542, 1990.292, 1990.042, 1989.792, 1989.542, 1989.292, 1989.042, 1988.792, 1988.542, 1988.292, 1988.042, 1987.792, 1987.542, 1987.292, 1987.042, 1986.792, 1986.542, 1986.292, 1986.042, 1985.792, 1985.542, 1985.292, 1985.042, 1984.792, 1984.542, 1984.292, 1984.042, 1983.792, 1983.542, 1983.292, 1983.042, 1982.792, 1982.542, 1982.292, 1982.042, 1981.792, 1981.542, 1981.292, 1981.042, 1980.792, 1980.542, 1980.292, 1980.042, 1979.792, 1979.542, 1979.292, 1979.042, 1978.792, 1978.542, 1978.292, 1978.042, 1977.792, 1977.542, 1977.292, 1977.042, 1976.792, 1976.542, 1976.292, 1976.042, 1975.792, 1975.542, 1975.292, 1975.042, 1974.792, 1974.542, 1974.292, 1974.042, 1973.792, 1973.542, 1973.292, 1973.042, 1972.792, 1972.542, 1972.292, 1972.042, 1971.792, 1971.542, 1971.292, 1971.042, 1970.792, 1970.542, 1970.292, 1970.042, 1969.792, 1969.542, 1969.292, 1969.042, 1968.792, 1968.542, 1968.292, 1968.042, 1967.792, 1967.542, 1967.292, 1967.042, 1966.792, 1966.542, 1966.292, 1966.042, 1965.792, 1965.542, 1965.292, 1965.042, 1964.792, 1964.542, 1964.292, 1964.042, 1963.792, 1963.542, 1963.292, 1963.042, 1962.792, 1962.542, 1962.292, 1962.042, 1961.792, 1961.542, 1961.292, 1961.042, 1960.792, 1960.542, 1960.292, 1960.042, 1959.792, 1959.542, 1959.292, 1959.042, 1958.792, 1958.542, 1958.292, 1958.042, 1957.792, 1957.542, 1957.292, 1957.042, 1956.792, 1956.542, 1956.292, 1956.042, 1955.792, 1955.542, 1955.292, 1955.042, 1954.792, 1954.542, 1954.292, 1954.042, 1953.792, 1953.542, 1953.292, 1953.042, 1952.792, 1952.542, 1952.292, 1952.042, 1951.792, 1951.542, 1951.292, 1951.042, 1950.792, 1950.542, 1950.292, 1950.042, 1949.792, 1949.542, 1949.292, 1949.042, 1948.792, 1948.542, 1948.292, 1948.042, 1947.792, 1947.542, 1947.292, 1947.042, 1946.792, 1946.542, 1946.292, 1946.042, 1945.792, 1945.542, 1945.292, 1945.042, 1944.792, 1944.542, 1944.292, 1944.042, 1943.792, 1943.542, 1943.292, 1943.042, 1942.792, 1942.542, 1942.292, 1942.042, 1941.792, 1941.542, 1941.292, 1941.042, 1940.792, 1940.542, 1940.292, 1940.042, 1939.792, 1939.542, 1939.292, 1939.042, 1938.792, 1938.542, 1938.292, 1938.042, 1937.792, 1937.542, 1937.292, 1937.042, 1936.792, 1936.542, 1936.292, 1936.042, 1935.792, 1935.542, 1935.292, 1935.042, 1934.792, 1934.542, 1934.292, 1934.042, 1933.792, 1933.542, 1933.292, 1933.042, 1932.792, 1932.542, 1932.292, 1932.042, 1931.792, 1931.542, 1931.292, 1931.042, 1930.792, 1930.542, 1930.292, 1930.042, 1929.792, 1929.542, 1929.292, 1929.042, 1928.792, 1928.542, 1928.292, 1928.042, 1927.792, 1927.542, 1927.292, 1927.042, 1926.792, 1926.542, 1926.292, 1926.042, 1925.792, 1925.542, 1925.292, 1925.042, 1924.792, 1924.542, 1924.292, 1924.042, 1923.792, 1923.542, 1923.292, 1923.042, 1922.792, 1922.542, 1922.292, 1922.042, 1921.792, 1921.542, 1921.292, 1921.042, 1920.792, 1920.542, 1920.292, 1920.042, 1919.792, 1919.542, 1919.292, 1919.042, 1918.792, 1918.542, 1918.292, 1918.042, 1917.792, 1917.542, 1917.292, 1917.042, 1916.792, 1916.542, 1916.292, 1916.042, 1915.792, 1915.542, 1915.292, 1915.042, 1914.792, 1914.542, 1914.292, 1914.042, 1913.792, 1913.542, 1913.292, 1913.042, 1912.792, 1912.542, 1912.292, 1912.042, 1911.792, 1911.542, 1911.292, 1911.042, 1910.792, 1910.542, 1910.292, 1910.042, 1909.792, 1909.542, 1909.292, 1909.042, 1908.792, 1908.542, 1908.292, 1908.042, 1907.792, 1907.542, 1907.292, 1907.042, 1906.792, 1906.542, 1906.292, 1906.042, 1905.792, 1905.542, 1905.292, 1905.042, 1904.792, 1904.542, 1904.292, 1904.042, 1903.792, 1903.542, 1903.292, 1903.042, 1902.792, 1902.542, 1902.292, 1902.042, 1901.792, 1901.542, 1901.292, 1901.042, 1900.792, 1900.542, 1900.292, 1900.042, 1899.792, 1899.542, 1899.292, 1899.042, 1898.792, 1898.542, 1898.292, 1898.042, 1897.792, 1897.542, 1897.292, 1897.042, 1896.792, 1896.542, 1896.292, 1896.042, 1895.792, 1895.542, 1895.292, 1895.042, 1894.792, 1894.542, 1894.292, 1894.042, 1893.792, 1893.542, 1893.292, 1893.042, 1892.792, 1892.542, 1892.292, 1892.042, 1891.792, 1891.542, 1891.292, 1891.042, 1890.792, 1890.542, 1890.292, 1890.042, 1889.792, 1889.542, 1889.292, 1889.042, 1888.792, 1888.542, 1888.292, 1888.042, 1887.792, 1887.542, 1887.292, 1887.042, 1886.792, 1886.542, 1886.292, 1886.042, 1885.792, 1885.542, 1885.292, 1885.042, 1884.792, 1884.542, 1884.292, 1884.042, 1883.792, 1883.542, 1883.292, 1883.042, 1882.792, 1882.542, 1882.292, 1882.042, 1881.792, 1881.542, 1881.292, 1881.042, 1880.792]}, {'inCompilationBeta': {'compilationName': 'Pages2kTemperature', 'compilationVersion': '2_1_1'}, 'TSid': 'Ocean2kHR_140', 'proxyObservationType': 'd18O', 'wDSPaleoUrl': 'https://www1.ncdc.noaa.gov/pub/data/paleo/pages2k/pages2k-temperature-v2-2017/data-version-2.0.0/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.txt', 'measurementTableName': 'measurementTable1', 'hasMeanValue': -4.9453, 'hasMedianValue': -4.942, 'resolution': {'hasMinValue': 0.25, 'hasMeanValue': 0.25, 'hasMaxValue': 0.25, 'hasMedianValue': 0.25, 'units': 'yr AD'}, 'hasMaxValue': -4.344, 'useInGlobalTemperatureAnalysis': True, 'notes': '; climateInterpretation_seasonality changed - was originally seasonal', 'variableName': 'd18O', 'interpretation': [{'variableDetail': 'sea@surface', 'scope': 'climate', 'direction': 'negative', 'seasonality': 'subannual', 'variable': 'temperature'}], 'measurementTableMD5': '793853407e414221c486d2e63b32dd87', 'variableType': 'measured', 'qCCertification': 'KLD, NJA', 'ocean2kID': 'PacificMadangTudhope2001', 'sensorGenus': 'Porites', 'number': 1, 'pages2kID': 'Ocn_097', 'hasArchiveType': {'label': 'Coral'}, 'hasMinValue': -5.515, 'paleoDataTableName': 'measTable', 'iso2kUI': 'CO01TUNG01A', 'units': 'permil', 'proxy': 'd18O', 'values': [-4.827, -4.786, -4.693, -4.852, -4.991, -4.904, -4.855, -4.862, -4.856, -4.947, -5.005, -5.298, -5.196, -5.298, -5.106, -5.375, -5.169, -5.083, -4.996, -5.027, -4.846, -4.646, -4.589, -4.972, -4.917, -4.795, -4.759, -5.301, -5.12, -5.086, -5.103, -5.244, -5.186, -5.059, -4.971, -5.356, -5.206, -4.885, -4.756, -4.959, -4.812, -4.667, -4.494, -5.117, -5.189, -5.133, -5.081, -5.165, -5.049, -4.883, -4.839, -5.103, -5.083, -4.96, -4.921, -5.204, -5.082, -5.133, -5.026, -5.334, -5.129, -4.889, -4.855, -5.214, -5.003, -4.842, -4.864, -5.038, -4.878, -5.027, -5.181, -5.515, -5.334, -5.06, -4.958, -5.268, -5.228, -5.136, -5.123, -5.304, -5.072, -4.748, -4.785, -5.234, -5.164, -5.053, -5.03, -5.188, -4.931, -4.99, -5.142, -5.216, -5.09, -4.865, -4.894, -5.041, -5.037, -5.064, -5.11, -5.291, -5.198, -5.242, -5.297, -5.492, -5.382, -5.087, -5.009, -5.282, -4.831, -4.524, -4.556, -5.071, -4.995, -4.958, -4.991, -5.08, -4.942, -4.908, -4.848, -4.993, -4.964, -5.031, -5.02, -5.245, -5.157, -5.041, -5.19, -5.39, -5.244, -5.072, -5.082, -5.362, -5.148, -4.889, -4.942, -4.895, -4.995, -4.924, -4.962, -5.0, -4.912, -4.774, -4.87, -5.104, -5.01, -4.996, -5.031, -5.112, -4.962, -5.003, -4.886, -5.095, -5.409, -4.992, -4.859, -5.151, -5.087, -5.031, -5.02, -5.355, -5.148, -5.13, -5.106, -5.228, -5.05, -4.868, -4.854, -4.937, -4.903, -4.902, -4.821, -4.963, -4.792, -4.886, -4.891, -5.146, -4.912, -4.856, -4.771, -4.964, -4.866, -4.909, -5.07, -5.459, -5.246, -4.871, -4.847, -5.086, -4.91, -4.912, -4.991, -5.203, -5.149, -4.957, -4.979, -5.232, -5.087, -5.072, -5.013, -5.329, -5.239, -5.016, -5.016, -5.079, -4.87, -4.786, -4.385, -4.525, -4.707, -4.607, -4.403, -4.607, -4.773, -4.846, -4.832, -4.925, -4.677, -4.487, -4.495, -4.597, -4.594, -4.629, -4.582, -4.832, -4.836, -4.687, -4.644, -4.967, -4.739, -4.803, -4.786, -5.133, -4.839, -4.899, -4.813, -4.973, -4.913, -5.002, -4.904, -5.114, -4.917, -4.886, -4.72, -4.926, -4.874, -4.677, -4.601, -4.924, -5.175, -4.906, -4.725, -5.135, -4.907, -4.829, -4.79, -5.185, -5.123, -4.988, -5.104, -5.33, -5.185, -5.158, -5.06, -5.282, -5.163, -5.06, -4.911, -5.03, -5.049, -4.688, -4.775, -5.055, -4.936, -4.807, -4.774, -5.162, -5.014, -4.975, -4.65, -4.919, -5.268, -4.892, -4.984, -5.139, -5.146, -4.998, -4.875, -5.035, -5.149, -5.123, -4.942, -5.108, -5.254, -4.856, -4.766, -5.051, -5.097, -4.715, -4.613, -4.786, -5.022, -4.986, -4.899, -4.96, -4.779, -4.897, -5.019, -5.453, -5.06, -4.788, -4.659, -4.767, -4.79, -4.378, -4.344, -4.727, -4.903, -4.875, -4.756, -4.988, -5.185, -4.943, -4.816, -4.839, -4.795, -4.747, -4.636, -4.753, -4.796, -4.716, -4.636, -4.775, -4.845, -4.809, -4.832, -5.013, -5.084, -4.909, -4.94, -5.031, -4.735, -4.625, -4.703, -4.933, -4.787, -4.808, -4.824, -5.266, -4.987, -4.634, -4.786, -5.08, -4.978, -4.988, -4.774, -5.006, -5.014, -4.866, -4.767, -4.722, -4.546, -4.359, -4.582, -5.062, -5.27, -5.077, -5.174, -5.2, -4.911, -4.96, -4.89, -5.115, -4.926, -4.839, -4.866, -5.211, -5.128, -5.037, -4.995, -5.131, -5.041, -4.969, -4.949, -5.052, -4.941, -4.671, -4.616, -5.11, -5.048, -4.751, -4.634, -5.052, -4.846, -4.742, -4.741, -4.903, -4.947, -4.848, -4.877, -4.886, -4.878, -4.956, -4.681, -4.941, -4.83, -5.185, -5.012, -4.967, -4.924, -4.77, -4.612, -4.957, -5.018, -4.97, -4.792, -4.788, -4.696, -4.525, -4.527, -4.721, -4.691, -4.853, -4.788, -4.931, -4.912, -4.954, -5.027, -4.937, -4.718, -4.512, -4.494, -4.675, -4.651, -4.666, -4.64, -4.849, -4.888, -4.833, -4.803, -4.863, -4.915, -4.733, -4.792, -4.872, -5.023, -4.923, -4.792, -4.906, -4.94, -4.801]}], 'missingValue': 'NaN'}]}], 'googleMetadataWorksheet': 'oruuxfm', 'googleSpreadSheetKey': '1wf30P-s54OTBdLw4dyeaIN53VDoN0u_hOqIwvAeLxtc', 'dataSetName': 'Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'inCompilation1_': 'Ocean2k_v1.0.0', 'minYear': 1880.792, 'datasetId': 'm8yv2VgG97zJmSg3XhqQ', 'inCompilation3_': 'PAGES2k_v2.1.0', 'geo': {'geometry': {'coordinates': [145.8167, -5.2167, -2.2], 'type': 'Point'}, 'properties': {'siteName': 'Madang Lagoon, Papua New Guinea', 'ocean': 'Pacific', 'type': 'http://linked.earth/ontology#Location', 'pages2kRegion': 'Ocean'}}, 'inCompilation2_': 'PAGES2k_v2.0.0', 'googleDataURL': 'https://docs.google.com/spreadsheets/d/1wf30P-s54OTBdLw4dyeaIN53VDoN0u_hOqIwvAeLxtc', 'maxYear': 1993.042, 'hasUrl': 'https://data.mint.isi.edu/files/lipd/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd', 'lipdVersion': 1.3, 'createdBy': 'matlab', 'archiveType': 'Coral'}
- get_model_properties()[source]
Get all the properties associated with a model
- Returns:
A list of unique properties attached to models
- Return type:
List
Examples
from pylipd.utils.dataset import load_datasets lipd = load_datasets(names='ODP846') model_properties = lipd.get_model_properties() print(model_properties)
['/home/docs/checkouts/readthedocs.org/user_builds/pylipd/conda/latest/lib/python3.10/site-packages/pylipd/data/ODP846.Lawrence.2006.lpd'] Loading 1 LiPD files
Loaded.. ['hasEnsembleTable', 'type', 'hasCode', 'hasSummaryTable']
- get_timeseries(dsnames, to_dataframe=False, mode='paleo', time='age')[source]
Get Legacy LiPD like Time Series Object (tso)
- Parameters:
dsnames (list) – array of dataset id or name strings
to_dataframe (bool {True; False}) – Whether to return a dataframe along the dictionary. Default is False
- Returns:
ts (dict) – A dictionary containing Time Series Object
df (Pandas.DataFrame) – If to_dataframe is set to True, returns a queriable Pandas DataFrame
Examples
from pylipd.lipd import LiPD # Fetch LiPD data from remote RDF Graph lipd_remote = LiPD() lipd_remote.set_endpoint("https://linkedearth.graphdb.mint.isi.edu/repositories/LiPDVerse-dynamic") ts_list = lipd_remote.get_timeseries(["Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001", "MD98_2181.Stott.2007", "Ant-WAIS-Divide.Severinghaus.2012"]) for dsname, tsos in ts_list.items(): for tso in tsos: if 'paleoData_variableName' in tso: print(dsname+': '+tso['paleoData_variableName']+': '+tso['archiveType'])
Extracting timeseries from dataset: Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001 ... Extracting timeseries from dataset: MD98_2181.Stott.2007 ... Extracting timeseries from dataset: Ant-WAIS-Divide.Severinghaus.2012 ...
- get_timeseries_essentials(dsnames=None, mode='paleo')[source]
- Returns specific properties for timeseries: ‘dataSetName’, ‘archiveType’, ‘geo_meanLat’, ‘geo_meanLon’,
‘geo_meanElev’, ‘paleoData_variableName’, ‘paleoData_values’, ‘paleoData_units’, ‘paleoData_proxy’ (paleo only), ‘paleoData_proxyGeneral’ (paleo only), ‘time_variableName’, ‘time_values’, ‘time_units’, ‘depth_variableName’, ‘depth_values’, ‘depth_units’
- Parameters:
dsnames (list) – array of dataset id or name strings
mode (paleo, chron) – Whether to retrun the information stored in the PaleoMeasurementTable or the ChronMeasurementTable. The default is ‘paleo’.
- Raises:
ValueError – Need to select either ‘chron’ or ‘paleo’
- Returns:
qres_df – A pandas dataframe returning the properties in columns for each series stored in a row of the dataframe
- Return type:
pandas.DataFrame
Example
from pylipd.utils.dataset import load_datasets lipd = load_datasets('ODP846.Lawrence.2006.lpd') df_paleo = lipd.get_timeseries_essentials(mode='paleo') print(df_paleo)
['/home/docs/checkouts/readthedocs.org/user_builds/pylipd/conda/latest/lib/python3.10/site-packages/pylipd/data/ODP846.Lawrence.2006.lpd'] Loading 1 LiPD files
Loaded..
dataSetName archiveType geo_meanLat geo_meanLon \ 0 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 1 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 2 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 3 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 4 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 5 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 6 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 7 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 8 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 9 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 10 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 11 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 12 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 13 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 14 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 15 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 16 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 17 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 18 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 19 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 20 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 21 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 22 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 23 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 24 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 geo_meanElev paleoData_variableName \ 0 -3296.0 ukprime37 1 -3296.0 c. wuellerstorfi d18o 2 -3296.0 c. wuellerstorfi d18o 3 -3296.0 c. wuellerstorfi d18o 4 -3296.0 event 5 -3296.0 event 6 -3296.0 event 7 -3296.0 sample label 8 -3296.0 sample label 9 -3296.0 sample label 10 -3296.0 temp prahl 11 -3296.0 site/hole 12 -3296.0 c. wuellerstorfi d13c 13 -3296.0 c. wuellerstorfi d13c 14 -3296.0 c. wuellerstorfi d13c 15 -3296.0 u. peregrina d13c 16 -3296.0 u. peregrina d13c 17 -3296.0 u. peregrina d13c 18 -3296.0 interval 19 -3296.0 section 20 -3296.0 u. peregrina d18o 21 -3296.0 u. peregrina d18o 22 -3296.0 u. peregrina d18o 23 -3296.0 temp muller 24 -3296.0 c37 total paleoData_values paleoData_units \ 0 [0.821, 0.824, 0.828, 0.787, 0.777, 0.767, 0.7... unitless 1 [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... per mil PDB 2 [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... per mil PDB 3 [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... per mil PDB 4 [138-846B, 138-846B, 138-846B, 138-846B, 138-8... unitless 5 [138-846B, 138-846B, 138-846B, 138-846B, 138-8... unitless 6 [138-846B, 138-846B, 138-846B, 138-846B, 138-8... unitless 7 [138-846B-1H-1, 138-846B-1H-1, 138-846B-1H-1, ... unitless 8 [138-846B-1H-1, 138-846B-1H-1, 138-846B-1H-1, ... unitless 9 [138-846B-1H-1, 138-846B-1H-1, 138-846B-1H-1, ... unitless 10 [23.0, 23.1, 23.2, 22.0, 21.7, 21.4, 21.7, 21.... deg C 11 [846B, 846B, 846B, 846B, 846B, 846B, 846B, 846... unitless 12 [3.38, 3.46, 3.65, 3.88, 4.14, 4.47, 4.99, 4.9... per mil PDB 13 [3.38, 3.46, 3.65, 3.88, 4.14, 4.47, 4.99, 4.9... per mil PDB 14 [3.38, 3.46, 3.65, 3.88, 4.14, 4.47, 4.99, 4.9... per mil PDB 15 [nan, nan, nan, nan, nan, nan, nan, nan, nan, ... per mil PDB 16 [nan, nan, nan, nan, nan, nan, nan, nan, nan, ... per mil PDB 17 [nan, nan, nan, nan, nan, nan, nan, nan, nan, ... per mil PDB 18 [15-16, 25-26, 35-36, 45-46, 55-56, 65-66, 75-... cm 19 [1H-1, 1H-1, 1H-1, 1H-1, 1H-1, 1H-1, 1H-1, 1H-... unitless 20 [0.14, 0.01, -0.1, -0.06, -0.17, -0.21, -0.41,... per mil PDB 21 [0.14, 0.01, -0.1, -0.06, -0.17, -0.21, -0.41,... per mil PDB 22 [0.14, 0.01, -0.1, -0.06, -0.17, -0.21, -0.41,... per mil PDB 23 [23.545, 23.648, 23.752, 22.515, 22.206, 21.89... deg C 24 [2.37, 2.1, 1.87, 2.74, 3.75, 7.62, 7.86, 7.73... nmol/kg paleoData_proxy paleoData_proxyGeneral time_variableName \ 0 None None age 1 None None None 2 None None None 3 None None None 4 None None None 5 None None None 6 None None None 7 None None None 8 None None None 9 None None None 10 None None age 11 None None age 12 None None None 13 None None None 14 None None None 15 None None None 16 None None None 17 None None None 18 None None age 19 None None age 20 None None None 21 None None None 22 None None None 23 None None age 24 None None age time_values time_units \ 0 [5.228, 8.947, 11.966, 14.427, 16.502, 18.41, ... kyr BP 1 None None 2 None None 3 None None 4 None None 5 None None 6 None None 7 None None 8 None None 9 None None 10 [5.228, 8.947, 11.966, 14.427, 16.502, 18.41, ... kyr BP 11 [5.228, 8.947, 11.966, 14.427, 16.502, 18.41, ... kyr BP 12 None None 13 None None 14 None None 15 None None 16 None None 17 None None 18 [5.228, 8.947, 11.966, 14.427, 16.502, 18.41, ... kyr BP 19 [5.228, 8.947, 11.966, 14.427, 16.502, 18.41, ... kyr BP 20 None None 21 None None 22 None None 23 [5.228, 8.947, 11.966, 14.427, 16.502, 18.41, ... kyr BP 24 [5.228, 8.947, 11.966, 14.427, 16.502, 18.41, ... kyr BP depth_variableName depth_values \ 0 depth [0.16, 0.26, 0.36, 0.46, 0.56, 0.66, 0.76, 0.8... 1 depth comp [12.0, 23.0, 33.0, 33.0, 43.0, 53.0, 63.0, 73.... 2 depth [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 3 depth cr [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 4 depth comp [12.0, 23.0, 33.0, 33.0, 43.0, 53.0, 63.0, 73.... 5 depth [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 6 depth cr [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 7 depth comp [12.0, 23.0, 33.0, 33.0, 43.0, 53.0, 63.0, 73.... 8 depth [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 9 depth cr [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 10 depth [0.16, 0.26, 0.36, 0.46, 0.56, 0.66, 0.76, 0.8... 11 depth [0.16, 0.26, 0.36, 0.46, 0.56, 0.66, 0.76, 0.8... 12 depth comp [12.0, 23.0, 33.0, 33.0, 43.0, 53.0, 63.0, 73.... 13 depth [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 14 depth cr [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 15 depth comp [12.0, 23.0, 33.0, 33.0, 43.0, 53.0, 63.0, 73.... 16 depth [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 17 depth cr [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 18 depth [0.16, 0.26, 0.36, 0.46, 0.56, 0.66, 0.76, 0.8... 19 depth [0.16, 0.26, 0.36, 0.46, 0.56, 0.66, 0.76, 0.8... 20 depth comp [12.0, 23.0, 33.0, 33.0, 43.0, 53.0, 63.0, 73.... 21 depth [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 22 depth cr [0.12, 0.23, 0.33, 0.33, 0.43, 0.53, 0.63, 0.7... 23 depth [0.16, 0.26, 0.36, 0.46, 0.56, 0.66, 0.76, 0.8... 24 depth [0.16, 0.26, 0.36, 0.46, 0.56, 0.66, 0.76, 0.8... depth_units 0 m 1 mcd 2 m 3 rmcd 4 mcd 5 m 6 rmcd 7 mcd 8 m 9 rmcd 10 m 11 m 12 mcd 13 m 14 rmcd 15 mcd 16 m 17 rmcd 18 m 19 m 20 mcd 21 m 22 rmcd 23 m 24 m
To return the information stored in the ChronTable:
from pylipd.utils.dataset import load_datasets lipd = load_datasets('ODP846.Lawrence.2006.lpd') df_chron = lipd.get_timeseries_essentials(mode='chron') print(df_chron)
['/home/docs/checkouts/readthedocs.org/user_builds/pylipd/conda/latest/lib/python3.10/site-packages/pylipd/data/ODP846.Lawrence.2006.lpd'] Loading 1 LiPD files
Loaded.. dataSetName archiveType geo_meanLat geo_meanLon \ 0 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 1 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 2 ODP846.Lawrence.2006 Marine sediment -3.1 -90.8 geo_meanElev chronData_variableName \ 0 -3296.0 d18o 1 -3296.0 age 2 -3296.0 depth chronData_values chronData_units \ 0 [3.38, 3.46, 3.765, 4.14, 4.47, 4.99, 4.99, 4.... permil 1 [3.645, 7.99, 11.18, 13.803, 15.886, 17.93, 19... ky BP 2 [0.12, 0.23, 0.33, 0.43, 0.53, 0.63, 0.73, 0.8... m time_variableName time_values \ 0 age [3.645, 7.99, 11.18, 13.803, 15.886, 17.93, 19... 1 age [3.645, 7.99, 11.18, 13.803, 15.886, 17.93, 19... 2 age [3.645, 7.99, 11.18, 13.803, 15.886, 17.93, 19... time_units depth_variableName \ 0 ky BP depth 1 ky BP depth 2 ky BP depth depth_values depth_units 0 [0.12, 0.23, 0.33, 0.43, 0.53, 0.63, 0.73, 0.8... m 1 [0.12, 0.23, 0.33, 0.43, 0.53, 0.63, 0.73, 0.8... m 2 [0.12, 0.23, 0.33, 0.43, 0.53, 0.63, 0.73, 0.8... m
- get_variable_properties()[source]
Get a list of variable properties that can be used for querying
- Returns:
A list of unique variable properties
- Return type:
list
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir(name='Pages2k') variable_properties = lipd.get_variable_properties() print(variable_properties)
Loading 16 LiPD files
Loaded.. ['dataType', 'hasResolution', 'hasType', 'hasVariableId', 'measurementTableMD5', 'hasDescription', 'hasName', 'hasMeanValue', 'hasMinValue', 'hasValues', 'wDSPaleoUrl', 'hasUnits', 'foundInDataset', 'paleoDataTableName', 'hasStandardVariable', 'inferredVariableType', 'type', 'measurementTableName', 'hasColumnNumber', 'hasMedianValue', 'hasMaxValue', 'foundInTable', 'hasArchiveType', 'hasNotes', 'qCCertification', 'hasProxy', 'hasInterpretation', 'partOfCompilation', 'useInGlobalTemperatureAnalysis', 'precededBy', 'pages2kID', 'calibratedVia', 'proxyObservationType', 'detail', 'measurementMaterial', 'hasUncertainty', 'measurementMethod', 'sensorSpecies', 'ocean2kID', 'iso2kUI', 'sensorGenus']
- load(lipdfiles, parallel=False, standardize=True, add_labels=True)[source]
Load LiPD files.
- Parameters:
lipdfiles (list of str) – array of paths to lipd files (the paths could also be urls)
parallel (bool) – (Optional) set to True to process lipd files in parallel. You must run this function under the “__main__” process for this to work
Examples
In this example, we load LiPD files for an array of paths.
from pylipd.lipd import LiPD lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", "../examples/data/MD98_2181.Stott.2007.lpd", "../examples/data/Ant-WAIS-Divide.Severinghaus.2012.lpd", "https://lipdverse.org/data/LCf20b99dfe8d78840ca60dfb1f832b9ec/1_0_1/Nunalleq.Ledger.2018.lpd" ]) print(lipd.get_all_dataset_names())
Loading 4 LiPD files
Loaded.. ['Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'MD98_2181.Stott.2007', 'Ant-WAIS-Divide.Severinghaus.2012', 'Nunalleq.Ledger.2018']
- load_datasets(datasets: list[Dataset])[source]
Loads instances of Dataset class into the LiPD graph
- Parameters:
pylipd.classes.Dataset (list of) – A list of Dataset objects
Examples
pyLipd ships with existing datasets that can be loaded directly through the package. Let’s load the Pages2k sample datasets using this method.
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') dses = lipd.get_datasets() # Modify the datasets if needed, then write them to the same, or another LiPD object lipd2 = LiPD() lipd2.load_datasets(dses)
Loading 16 LiPD files
Loaded..
- load_from_dir(dir_path, parallel=False, cutoff=None, standardize=True, add_labels=True)[source]
Load LiPD files from a directory
- Parameters:
dir_path (str) – path to the directory containing lipd files
parallel (bool) – (Optional) set to True to process lipd files in parallel. You must run this function under the “__main__” process for this to work
cutoff (int) – (Optional) the maximum number of files to load at once.
Examples
In this example, we load LiPD files from a directory.
from pylipd.lipd import LiPD lipd = LiPD() lipd.load_from_dir("../examples/data") print(lipd.get_all_dataset_names())
Loading 4 LiPD files
Loaded.. ['Ant-WAIS-Divide.Severinghaus.2012', 'Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'MD98_2181.Stott.2007', 'ODP846.Lawrence.2006']
- load_remote_datasets(dsnames, load_default_graph=True)[source]
Loads remote datasets into cache if a remote endpoint is set
- Parameters:
dsnames (array) – array of dataset names
Examples
from pylipd.lipd import LiPD # Fetch LiPD data from remote RDF Graph lipd_remote = LiPD() lipd_remote.set_endpoint("https://linkedearth.graphdb.mint.isi.edu/repositories/LiPDVerse-dynamic") lipd_remote.load_remote_datasets(["Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001", "MD98_2181.Stott.2007", "Ant-WAIS-Divide.Severinghaus.2012"]) print(lipd_remote.get_all_dataset_names())
Caching datasets from remote endpoint.. Making remote query to endpoint: https://linkedearth.graphdb.mint.isi.edu/repositories/LiPDVerse-dynamic
Done.. ['Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'MD98_2181.Stott.2007', 'Ant-WAIS-Divide.Severinghaus.2012']
- pop(dsnames)[source]
Pops dataset(s) from the graph and returns the popped LiPD object
- Parameters:
dsnames (str or list of str) – dataset name(s) to be popped.
- Returns:
LiPD object with the popped dataset(s)
- Return type:
Examples
from pylipd.lipd import LiPD # Load local files lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", "../examples/data/MD98_2181.Stott.2007.lpd" ]) all_datasets = lipd.get_all_dataset_names() print("Loaded datasets: " + str(all_datasets)) popped = lipd.pop(all_datasets[0]) print("Loaded datasets after pop: " + str(lipd.get_all_dataset_names())) print("Popped dataset: " + str(popped.get_all_dataset_names()))
Loading 2 LiPD files
Loaded.. Loaded datasets: ['Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'MD98_2181.Stott.2007'] Loaded datasets after pop: ['MD98_2181.Stott.2007'] Popped dataset: ['Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001']
- remove(dsnames)[source]
Removes dataset(s) from the graph
- Parameters:
dsnames (str or list of str) – dataset name(s) to be removed
Examples
from pylipd.lipd import LiPD # Load local files lipd = LiPD() lipd.load([ "../examples/data/Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001.lpd", "../examples/data/MD98_2181.Stott.2007.lpd" ]) all_datasets = lipd.get_all_dataset_names() print("Loaded datasets: " + str(all_datasets)) lipd.remove(all_datasets[0]) print("Loaded datasets after remove: " + str(lipd.get_all_dataset_names()))
Loading 2 LiPD files
Loaded.. Loaded datasets: ['Ocn-MadangLagoonPapuaNewGuinea.Kuhnert.2001', 'MD98_2181.Stott.2007'] Loaded datasets after remove: ['MD98_2181.Stott.2007']
- to_lipd_series(parallel=False)[source]
Converts the LiPD object to a LiPDSeries object
- Parameters:
parallel (bool) – Whether to use parallel processing to load the data. Default is False
- Returns:
A LiPDSeries object
- Return type:
pylipd.lipd.LiPDSeries
Examples
from pylipd.lipd import LiPD lipd = LiPD() lipd.load([ "../examples/data/ODP846.Lawrence.2006.lpd" ]) S = lipd.to_lipd_series()
Loading 1 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done..
LiPDSeries (pylipd.lipd_series.LiPDSeries)
- class pylipd.lipd_series.LiPDSeries(graph=None)[source]
The LiPD Series class describes a collection of LiPD (Linked Paleo Data) variables. It contains an RDF Graph which is serialization of LiPD variables into an RDF graph containing terms from the LiPD Ontology <http://linked.earth/Ontology/release/core/1.2.0/index-en.html>. Each LiPD Variable is also associated with the LiPD itself so it can be deserialized into the original LiPD format. How to browse and query the LiPD variables is described in a short example below.
Examples
In this example, we read an online LiPD file and convert it into a time series object dictionary.
from pylipd.lipd_series import LiPDSeries lipd = LiPD() lipd.load(["https://lipdverse.org/data/LCf20b99dfe8d78840ca60dfb1f832b9ec/1_0_1//Nunalleq.Ledger.2018.lpd"]) lipd_series = lipd.to_lipd_series()
Loading 1 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done..
Methods
clear
()Clears the graph
copy
()Makes a copy of the object
filter_by_name
(name)Filters series to return a new LiPDSeries that only keeps variables that have the specified name (regex)
filter_by_proxy
(proxy)Filters series to return a new LiPDSeries that only keeps variables that have the specified proxy (regex)
filter_by_resolution
(threshold[, stats])Filters series to return a new LiPDSeries that only keeps variables that have a resolution less than the specified threshold.
get
(ids)Get id(s) from the graph and returns the LiPD object
get_all_graph_ids
()Get all Graph ids
Get a list of all possible proxy.
Get a list of all possible distinct variableNames.
Returns a list of all variables in the graph
This function returns information about each variable: dataSetName, archiveType, name, values, units, TSID, proxy.
Get a list of all the properties name associated with the dataset.
load
(lipd[, parallel])Extract Variables from the LiPD object.
merge
(rdf)Merges the current LiPD object with another LiPD object
pop
(ids)Pops graph(s) from the combined graph and returns the popped RDF Graph
query
(query[, remote, result])Once data is loaded into the graph (or remote endpoint set), one can make SparQL queries to the graph
remove
(ids)Removes ids(s) from the graph
serialize
()Returns RDF quad serialization of the current combined Graph .
set_endpoint
(endpoint)Sets a SparQL endpoint for a remote Knowledge Base (example: GraphDB)
- filter_by_name(name)[source]
Filters series to return a new LiPDSeries that only keeps variables that have the specified name (regex)
- Parameters:
name (str) – The variable name to filter by
- Returns:
A new LiPDSeries object that only contains variables that have the specified name (regex)
- Return type:
Examples
from pylipd.utils.dataset import load_datasets lipd = load_datasets('ODP846.Lawrence.2006.lpd') S = lipd.to_lipd_series() sst = S.filter_by_name('sst') print(sst.get_all_variable_names())
['/home/docs/checkouts/readthedocs.org/user_builds/pylipd/conda/latest/lib/python3.10/site-packages/pylipd/data/ODP846.Lawrence.2006.lpd'] Loading 1 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done.. ['sst']
- filter_by_proxy(proxy)[source]
Filters series to return a new LiPDSeries that only keeps variables that have the specified proxy (regex)
- Parameters:
proxy (str) – The name of the proxy to filter by
- Returns:
A new LiPDSeries object that only contains variables that have the specified name (regex)
- Return type:
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') S = lipd.to_lipd_series() S_filtered = S.filter_by_proxy('ring width') print(S_filtered.get_all_proxy())
Loading 16 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done.. ['ring width']
- filter_by_resolution(threshold, stats='Mean')[source]
Filters series to return a new LiPDSeries that only keeps variables that have a resolution less than the specified threshold.
- Parameters:
threshold (float) – The maximum resolution to keep
stats (str, optional) – Whether to use ‘Mean’, ‘Median’, ‘Min’ or ‘Max’ resolution. The default is ‘Mean’.
- Raises:
ValueError – Make sure that the stats is of [‘Mean’,’Median’, ‘Min’, ‘Max’].
- Returns:
S – A new LiPDSeries object that only contains the filtered variables
- Return type:
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') S = lipd.to_lipd_series() S_filtered = S.filter_by_resolution(10)
Loading 16 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done..
- get_all_proxy()[source]
Get a list of all possible proxy. Useful for filtering and querying.
- Returns:
A list of unique proxies
- Return type:
list
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') S = lipd.to_lipd_series() proxyName = S.get_all_proxy() print(proxyName)
Loading 16 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done.. ['alkenone', 'borehole', 'd18O', 'ring width', 'maximum latewood density', 'Mg/Ca', 'historical', 'reflectance']
- get_all_variable_names()[source]
Get a list of all possible distinct variableNames. Useful for filtering and querying.
- Returns:
A list of unique variableName
- Return type:
list
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir('Pages2k') S = lipd.to_lipd_series() varName = S.get_all_variable_names() print(varName)
Loading 16 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done.. ['temperature', 'year', 'uncertainty_temperature', 'd18O', 'trsgi', 'Uk37', 'MXD', 'depth_bottom', 'Mg_Ca', 'notes', 'depth_top']
- get_all_variables()[source]
Returns a list of all variables in the graph
- Returns:
A dataframe of all variables in the graph with columns uri, varid, varname
- Return type:
pandas.DataFrame
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir() S = lipd.to_lipd_series() df = S.get_all_variables() print(df)
Loading 16 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done.. uri TSID \ 0 http://linked.earth/lipd/Ocn-AlboranSea436B.Ni... LPD0e0867fe 1 http://linked.earth/lipd/Ant-WAIS-Divide.Sever... LPDb9285123 2 http://linked.earth/lipd/Asi-SourthAndMiddleUr... Asia_230 3 http://linked.earth/lipd/Arc-Kongressvatnet.D_... Arc_078 4 http://linked.earth/lipd/Ocn-FeniDrift.Richter... LPDb7290ea4 5 http://linked.earth/lipd/Ocn-FeniDrift.Richter... LPD47182517 6 http://linked.earth/lipd/Eur-Stockholm.Leijonh... Eur_006 7 http://linked.earth/lipd/Eur-CoastofPortugal.A... Eur_010 8 http://linked.earth/lipd/Eur-FinnishLakelands.... Eur_005 9 http://linked.earth/lipd/Eur-LakeSilvaplana.Tr... Eur_002 10 http://linked.earth/lipd/Ocn-AlboranSea436B.Ni... PYTPD2RJATT 11 http://linked.earth/lipd/Ant-WAIS-Divide.Sever... PYTAAFWZCUK 12 http://linked.earth/lipd/Asi-SourthAndMiddleUr... PYTX5TD5SOT 13 http://linked.earth/lipd/Ocn-PedradeLume-CapeV... PYT296KN772 14 http://linked.earth/lipd/Ocn-RedSea.Felis.2000... PYTXPC7HUA2 15 http://linked.earth/lipd/Eur-SpannagelCave.Man... PYTSOOGT8HT 16 http://linked.earth/lipd/Eur-SpanishPyrenees.D... PYT2K8MIA3N 17 http://linked.earth/lipd/Eur-NorthernSpain.Mar... PYTE7VH7UMO 18 http://linked.earth/lipd/Arc-Kongressvatnet.D_... PYTOAVDFCGU 19 http://linked.earth/lipd/Eur-NorthernScandinav... PYTECO66XAD 20 http://linked.earth/lipd/Ocn-FeniDrift.Richter... PYTHS7WC58V 21 http://linked.earth/lipd/Ocn-FeniDrift.Richter... PYTA482M43E 22 http://linked.earth/lipd/Eur-Stockholm.Leijonh... PYTWVH672OU 23 http://linked.earth/lipd/Eur-CoastofPortugal.A... PYTNSKF0DVD 24 http://linked.earth/lipd/Eur-FinnishLakelands.... PYTUSB62S0A 25 http://linked.earth/lipd/Eur-LakeSilvaplana.Tr... PYT1E4X3DDF 26 http://linked.earth/lipd/Ocn-SinaiPeninsula_Re... PYTGGLQ9T54 27 http://linked.earth/lipd/Ant-WAIS-Divide.Sever... LPDa7a4074f 28 http://linked.earth/lipd/Ocn-PedradeLume-CapeV... Ocean2kHR_107 29 http://linked.earth/lipd/Ocn-RedSea.Felis.2000... Ocean2kHR_019 30 http://linked.earth/lipd/Eur-SpannagelCave.Man... Eur_001 31 http://linked.earth/lipd/Eur-NorthernSpain.Mar... Eur_008 32 http://linked.earth/lipd/Ocn-SinaiPeninsula_Re... Ocean2kHR_018 33 http://linked.earth/lipd/Eur-SpanishPyrenees.D... Eur_020 34 http://linked.earth/lipd/Arc-Kongressvatnet.D_... Arc_077 35 http://linked.earth/lipd/Eur-NorthernScandinav... Eur_014 36 http://linked.earth/lipd/Ocn-FeniDrift.Richter... LPD071f9a58 37 http://linked.earth/lipd/Ocn-FeniDrift.Richter... LPDbceb5d84 38 http://linked.earth/lipd/Ocn-FeniDrift.Richter... LPDba471ae7 39 http://linked.earth/lipd/Ocn-FeniDrift.Richter... LPD6e0eacd1 40 http://linked.earth/lipd/Ocn-FeniDrift.Richter... LPD873b43d0 variableName 0 temperature 1 temperature 2 temperature 3 temperature 4 temperature 5 temperature 6 temperature 7 temperature 8 temperature 9 temperature 10 year 11 year 12 year 13 year 14 year 15 year 16 year 17 year 18 year 19 year 20 year 21 year 22 year 23 year 24 year 25 year 26 year 27 uncertainty_temperature 28 d18O 29 d18O 30 d18O 31 d18O 32 d18O 33 trsgi 34 Uk37 35 MXD 36 depth_bottom 37 Mg_Ca 38 Mg_Ca 39 notes 40 depth_top
- get_timeseries_essentials()[source]
This function returns information about each variable: dataSetName, archiveType, name, values, units, TSID, proxy.
- Returns:
qres_df – A dataframe containing the information in each column
- Return type:
pandas.DataFrame
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir() S = lipd.to_lipd_series() df = S.get_timeseries_essentials() print(df)
Loading 16 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done.. dataSetName archiveType \ 0 Ocn-AlboranSea436B.Nieto-Moreno.2013 Marine sediment 1 Ocn-AlboranSea436B.Nieto-Moreno.2013 Marine sediment 2 Ant-WAIS-Divide.Severinghaus.2012 Borehole 3 Ant-WAIS-Divide.Severinghaus.2012 Borehole 4 Ant-WAIS-Divide.Severinghaus.2012 Borehole 5 Asi-SourthAndMiddleUrals.Demezhko.2007 Borehole 6 Asi-SourthAndMiddleUrals.Demezhko.2007 Borehole 7 Ocn-PedradeLume-CapeVerdeIslands.Moses.2006 Coral 8 Ocn-PedradeLume-CapeVerdeIslands.Moses.2006 Coral 9 Ocn-RedSea.Felis.2000 Coral 10 Ocn-RedSea.Felis.2000 Coral 11 Eur-SpannagelCave.Mangini.2005 Speleothem 12 Eur-SpannagelCave.Mangini.2005 Speleothem 13 Eur-SpanishPyrenees.Dorado-Linan.2012 Wood 14 Eur-SpanishPyrenees.Dorado-Linan.2012 Wood 15 Eur-NorthernSpain.Martin-Chivelet.2011 Speleothem 16 Eur-NorthernSpain.Martin-Chivelet.2011 Speleothem 17 Arc-Kongressvatnet.D'Andrea.2012 Lake sediment 18 Arc-Kongressvatnet.D'Andrea.2012 Lake sediment 19 Arc-Kongressvatnet.D'Andrea.2012 Lake sediment 20 Eur-NorthernScandinavia.Esper.2012 Wood 21 Eur-NorthernScandinavia.Esper.2012 Wood 22 Ocn-FeniDrift.Richter.2009 Marine sediment 23 Ocn-FeniDrift.Richter.2009 Marine sediment 24 Ocn-FeniDrift.Richter.2009 Marine sediment 25 Ocn-FeniDrift.Richter.2009 Marine sediment 26 Ocn-FeniDrift.Richter.2009 Marine sediment 27 Ocn-FeniDrift.Richter.2009 Marine sediment 28 Ocn-FeniDrift.Richter.2009 Marine sediment 29 Ocn-FeniDrift.Richter.2009 Marine sediment 30 Ocn-FeniDrift.Richter.2009 Marine sediment 31 Eur-Stockholm.Leijonhufvud.2009 Documents 32 Eur-Stockholm.Leijonhufvud.2009 Documents 33 Eur-CoastofPortugal.Abrantes.2011 Marine sediment 34 Eur-CoastofPortugal.Abrantes.2011 Marine sediment 35 Eur-FinnishLakelands.Helama.2014 Wood 36 Eur-FinnishLakelands.Helama.2014 Wood 37 Eur-LakeSilvaplana.Trachsel.2010 Lake sediment 38 Eur-LakeSilvaplana.Trachsel.2010 Lake sediment 39 Ocn-SinaiPeninsula,RedSea.Moustafa.2000 Coral 40 Ocn-SinaiPeninsula,RedSea.Moustafa.2000 Coral name TSID \ 0 temperature LPD0e0867fe 1 year PYTPD2RJATT 2 temperature LPDb9285123 3 year PYTAAFWZCUK 4 uncertainty_temperature LPDa7a4074f 5 temperature Asia_230 6 year PYTX5TD5SOT 7 year PYT296KN772 8 d18O Ocean2kHR_107 9 d18O Ocean2kHR_019 10 year PYTXPC7HUA2 11 d18O Eur_001 12 year PYTSOOGT8HT 13 trsgi Eur_020 14 year PYT2K8MIA3N 15 year PYTE7VH7UMO 16 d18O Eur_008 17 temperature Arc_078 18 Uk37 Arc_077 19 year PYTOAVDFCGU 20 MXD Eur_014 21 year PYTECO66XAD 22 notes LPD6e0eacd1 23 Mg_Ca LPDba471ae7 24 depth_top LPD873b43d0 25 depth_bottom LPD071f9a58 26 temperature LPDb7290ea4 27 year PYTHS7WC58V 28 year PYTA482M43E 29 temperature LPD47182517 30 Mg_Ca LPDbceb5d84 31 temperature Eur_006 32 year PYTWVH672OU 33 year PYTNSKF0DVD 34 temperature Eur_010 35 temperature Eur_005 36 year PYTUSB62S0A 37 year PYT1E4X3DDF 38 temperature Eur_002 39 d18O Ocean2kHR_018 40 year PYTGGLQ9T54 values units proxy 0 [18.79, 19.38, 19.61, 18.88, 18.74, 19.25, 18.... degC None 1 [1999.07, 1993.12, 1987.17, 1975.26, 1963.36, ... yr AD None 2 [-29.607, -29.607, -29.606, -29.606, -29.605, ... degC None 3 [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,... yr AD None 4 [1.327, 1.328, 1.328, 1.329, 1.33, 1.33, 1.331... degC None 5 [0.166, 0.264, 0.354, 0.447, 0.538, 0.62, 0.68... degC None 6 [800, 850, 900, 950, 1000, 1050, 1100, 1150, 1... yr AD None 7 [1928.96, 1929.04, 1929.12, 1929.21, 1929.29, ... yr AD None 8 [-3.11, -2.9, -2.88, -2.73, -2.73, -2.84, -2.8... permil None 9 [-4.12, -3.82, -3.05, -3.02, -3.62, -3.96, -3.... permil None 10 [1995.583, 1995.417, 1995.25, 1995.083, 1994.9... yr AD None 11 [-7.49, -7.41, -7.36, -7.15, -7.28, -6.99, -6.... permil None 12 [1935.0, 1932.0, 1930.0, 1929.0, 1929.0, 1928.... yr AD None 13 [-1.612, -0.703, -0.36, -0.767, -0.601, -0.733... None None 14 [1260, 1261, 1262, 1263, 1264, 1265, 1266, 126... yr AD None 15 [2000, 1987, 1983, 1978, 1975, 1971, 1967, 196... yr AD None 16 [0.94, 0.8, 0.23, 0.17, 0.51, 0.36, 0.24, 0.4,... permil None 17 [5.9, 5.1, 6.1, 5.3, 4.3, 4.8, 3.8, 4.8, 4.3, ... degC None 18 [-0.65, -0.67, -0.65, -0.67, -0.69, -0.68, -0.... None None 19 [2008, 2004, 2000, 1996, 1990, 1987, 1982, 197... yr AD None 20 [0.46, 1.305, 0.755, -0.1, -0.457, 1.62, 0.765... None None 21 [-138, -137, -136, -135, -134, -133, -132, -13... yr AD None 22 [M200309, M200309, M200309, M200309, M200309, ... None None 23 [2.31, 1.973, 1.901, 1.887, 2.038, 2.394, 1.83... None None 24 [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, ... cm None 25 [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, ... cm None 26 [12.94, 10.99, 10.53, 10.44, 11.39, 13.38, 10.... degC None 27 [1998, 1987, 1975, 1962, 1949, 1936, 1924, 191... yr AD None 28 [1998, 1987, 1975, 1962, 1949, 1936, 1924, 191... yr AD None 29 [12.94, 10.99, 10.53, 10.44, 11.39, 13.38, 10.... degC None 30 [2.31, 1.973, 1.901, 1.887, 2.038, 2.394, 1.83... None None 31 [-1.7212, -1.6382, -0.6422, 0.1048, -0.7252, -... degC None 32 [1502, 1503, 1504, 1505, 1506, 1507, 1508, 150... yr AD None 33 [971.19, 982.672, 991.858, 1001.044, 1010.23, ... yr AD None 34 [15.235, 15.329, 15.264, 15.376, 15.4, 15.129,... degC None 35 [14.603, 14.643, 12.074, 13.898, 13.671, 13.41... degC None 36 [2000, 1999, 1998, 1997, 1996, 1995, 1994, 199... yr AD None 37 [1175, 1176, 1177, 1178, 1179, 1180, 1181, 118... yr AD None 38 [0.181707222, 0.111082797, 0.001382129, -0.008... degC None 39 [-3.05, -3.63, -3.53, -3.47, -3.1, -3.45, -3.6... permil None 40 [1993.12, 1992.86, 1992.66, 1992.39, 1992.12, ... yr AD None
- get_variable_properties()[source]
Get a list of all the properties name associated with the dataset. Useful to write custom queries
- Returns:
clean_list – A list of unique variable properties
- Return type:
list
Examples
from pylipd.utils.dataset import load_dir lipd = load_dir() S = lipd.to_lipd_series() l = S.get_variable_properties() print(l)
Loading 16 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done.. ['hasMinValue', 'hasColumnNumber', 'hasVariableId', 'paleoDataTableName', 'hasVersion', 'hasScope', 'foundInTable', 'hasStandardVariable', 'useInGlobalTemperatureAnalysis', 'foundInDatasetName', 'hasArchiveType', 'hasVariableDetail', 'hasMedianValue', 'hasMeanValue', 'hasMaxValue', 'partOfCompilation', 'measurementTableName', 'pages2kID', 'hasBasis', 'inferredVariableType', 'measurementTableMD5', 'foundInDataset', 'hasName', 'reference', 'hasDescription', 'wDSPaleoUrl', 'hasType', 'detail', 'label', 'hasNotes', 'hasValues', 'hasInterpretation', 'dataType', 'hasProxy', 'ocean2kID', 'hasDirection', 'hasResolution', 'proxyObservationType', 'sensorGenus', 'hasUncertainty', 'hasEquation', 'hasUnits', 'qCCertification', 'calibratedVia', 'sensorSpecies', 'precededBy', 'measurementMaterial', 'iso2kUI', 'measurementMethod']
- load(lipd, parallel=False)[source]
Extract Variables from the LiPD object.
- Parameters:
lipd (LiPD) – A LiPD object
Examples
from pylipd.lipd_series import LiPDSeries lipd = LiPD() lipd.load(["https://lipdverse.org/data/LCf20b99dfe8d78840ca60dfb1f832b9ec/1_0_1//Nunalleq.Ledger.2018.lpd"]) lipd_series = lipd.to_lipd_series()
Loading 1 LiPD files
Loaded.. Creating LiPD Series... - Extracting dataset subgraphs
- Extracting variable subgraphs
Done..
LiPD Classes
- class pylipd.classes.dataset.Dataset[source]
Methods
addChronData
addCreator
addFunding
addInvestigator
addPaleoData
addPublication
add_non_standard_property
from_data
from_json
getArchiveType
getChangeLog
getChronData
getCollectionName
getCollectionYear
getCompilationNest
getContributor
getCreators
getDataSource
getDatasetId
getFundings
getInvestigators
getLocation
getName
getNotes
getOriginalDataUrl
getPaleoData
getPublications
getSpreadsheetLink
getVersion
get_all_non_standard_properties
get_non_standard_property
setArchiveType
setChangeLog
setChronData
setCollectionName
setCollectionYear
setCompilationNest
setContributor
setCreators
setDataSource
setDatasetId
setFundings
setInvestigators
setLocation
setName
setNotes
setOriginalDataUrl
setPaleoData
setPublications
setSpreadsheetLink
setVersion
set_non_standard_property
to_data
to_json
- addPublication(publications: Publication)[source]
- getArchiveType() ArchiveType [source]
- getPublications() list[Publication] [source]
- setArchiveType(archiveType: ArchiveType)[source]
- setPublications(publications: list[Publication])[source]
- class pylipd.classes.paleodata.PaleoData[source]
Methods
addMeasurementTable
addModeledBy
add_non_standard_property
from_data
from_json
getMeasurementTables
getModeledBy
getName
get_all_non_standard_properties
get_non_standard_property
setMeasurementTables
setModeledBy
setName
set_non_standard_property
to_data
to_json
- class pylipd.classes.chrondata.ChronData[source]
Methods
addMeasurementTable
addModeledBy
add_non_standard_property
from_data
from_json
getMeasurementTables
getModeledBy
get_all_non_standard_properties
get_non_standard_property
setMeasurementTables
setModeledBy
set_non_standard_property
to_data
to_json
- class pylipd.classes.datatable.DataTable[source]
Methods
getDataFrame
([use_standard_names])addVariable
add_non_standard_property
from_data
from_json
getFileName
getMissingValue
getVariables
get_all_non_standard_properties
get_non_standard_property
setDataFrame
setFileName
setMissingValue
setVariables
set_non_standard_property
to_data
to_json
- class pylipd.classes.variable.Variable[source]
Methods
addCalibratedVia
addInterpretation
add_non_standard_property
from_data
from_json
getArchiveType
getCalibratedVias
getColumnNumber
getDescription
getFoundInDataset
getFoundInTable
getInstrument
getInterpretations
getMaxValue
getMeanValue
getMedianValue
getMinValue
getMissingValue
getName
getNotes
getPartOfCompilation
getPhysicalSample
getProxy
getProxyGeneral
getResolution
getStandardVariable
getUncertainty
getUncertaintyAnalytical
getUncertaintyReproducibility
getUnits
getValues
getVariableId
getVariableType
get_all_non_standard_properties
get_non_standard_property
isComposite
isPrimary
setArchiveType
setCalibratedVias
setColumnNumber
setComposite
setDescription
setFoundInDataset
setFoundInTable
setInstrument
setInterpretations
setMaxValue
setMeanValue
setMedianValue
setMinValue
setMissingValue
setName
setNotes
setPartOfCompilation
setPhysicalSample
setPrimary
setProxy
setProxyGeneral
setResolution
setStandardVariable
setUncertainty
setUncertaintyAnalytical
setUncertaintyReproducibility
setUnits
setValues
setVariableId
setVariableType
set_non_standard_property
to_data
to_json
- addCalibratedVia(calibratedVias: Calibration)[source]
- addInterpretation(interpretations: Interpretation)[source]
- getArchiveType() ArchiveType [source]
- getCalibratedVias() list[Calibration] [source]
- getInterpretations() list[Interpretation] [source]
- getProxy() PaleoProxy [source]
- getProxyGeneral() PaleoProxyGeneral [source]
- getResolution() Resolution [source]
- getStandardVariable() PaleoVariable [source]
- setArchiveType(archiveType: ArchiveType)[source]
- setCalibratedVias(calibratedVias: list[Calibration])[source]
- setInterpretations(interpretations: list[Interpretation])[source]
- setProxy(proxy: PaleoProxy)[source]
- setProxyGeneral(proxyGeneral: PaleoProxyGeneral)[source]
- setResolution(resolution: Resolution)[source]
- setStandardVariable(standardVariable: PaleoVariable)[source]
- class pylipd.classes.calibration.Calibration[source]
Methods
add_non_standard_property
from_data
from_json
getDOI
getDatasetRange
getEquation
getEquationIntercept
getEquationR2
getEquationSlope
getEquationSlopeUncertainty
getMethod
getMethodDetail
getNotes
getProxyDataset
getSeasonality
getTargetDataset
getUncertainty
get_all_non_standard_properties
get_non_standard_property
setDOI
setDatasetRange
setEquation
setEquationIntercept
setEquationR2
setEquationSlope
setEquationSlopeUncertainty
setMethod
setMethodDetail
setNotes
setProxyDataset
setSeasonality
setTargetDataset
setUncertainty
set_non_standard_property
to_data
to_json
- static from_data(id, data) Calibration [source]
- static from_json(data) Calibration [source]
- class pylipd.classes.uncertainty.Uncertainty[source]
Methods
add_non_standard_property
from_data
from_json
getUncertaintyType
get_all_non_standard_properties
get_non_standard_property
setUncertaintyType
set_non_standard_property
to_data
to_json
- static from_data(id, data) Uncertainty [source]
- static from_json(data) Uncertainty [source]
- class pylipd.classes.interpretation.Interpretation[source]
Methods
add_non_standard_property
from_data
from_json
getBasis
getDirection
getMathematicalRelation
getNotes
getRank
getScope
getSeasonality
getSeasonalityGeneral
getSeasonalityOriginal
getVariable
getVariableDetail
getVariableGeneral
getVariableGeneralDirection
get_all_non_standard_properties
get_non_standard_property
isLocal
setBasis
setDirection
setLocal
setMathematicalRelation
setNotes
setRank
setScope
setSeasonality
setSeasonalityGeneral
setSeasonalityOriginal
setVariable
setVariableDetail
setVariableGeneral
setVariableGeneralDirection
set_non_standard_property
to_data
to_json
- static from_data(id, data) Interpretation [source]
- static from_json(data) Interpretation [source]
- getSeasonality() InterpretationSeasonality [source]
- getSeasonalityGeneral() InterpretationSeasonality [source]
- getSeasonalityOriginal() InterpretationSeasonality [source]
- getVariable() InterpretationVariable [source]
- setSeasonality(seasonality: InterpretationSeasonality)[source]
- setSeasonalityGeneral(seasonalityGeneral: InterpretationSeasonality)[source]
- setSeasonalityOriginal(seasonalityOriginal: InterpretationSeasonality)[source]
- setVariable(variable: InterpretationVariable)[source]
- class pylipd.classes.changelog.ChangeLog[source]
Methods
add_non_standard_property
from_data
from_json
getChanges
getNotes
get_all_non_standard_properties
get_non_standard_property
setChanges
setNotes
set_non_standard_property
to_data
to_json
- class pylipd.classes.funding.Funding[source]
Methods
addGrant
addInvestigator
add_non_standard_property
from_data
from_json
getFundingAgency
getFundingCountry
getGrants
getInvestigators
get_all_non_standard_properties
get_non_standard_property
setFundingAgency
setFundingCountry
setGrants
setInvestigators
set_non_standard_property
to_data
to_json
- class pylipd.classes.location.Location[source]
Methods
add_non_standard_property
from_data
from_json
getContinent
getCoordinates
getCoordinatesFor
getCountry
getCountryOcean
getDescription
getElevation
getGeometryType
getLatitude
getLocationName
getLocationType
getLongitude
getNotes
getOcean
getSiteName
get_all_non_standard_properties
get_non_standard_property
setContinent
setCoordinates
setCoordinatesFor
setCountry
setCountryOcean
setDescription
setElevation
setGeometryType
setLatitude
setLocationName
setLocationType
setLongitude
setNotes
setOcean
setSiteName
set_non_standard_property
to_data
to_json
- class pylipd.classes.model.Model[source]
Methods
addDistributionTable
addEnsembleTable
addSummaryTable
add_non_standard_property
from_data
from_json
getCode
getDistributionTables
getEnsembleTables
getSummaryTables
get_all_non_standard_properties
get_non_standard_property
setCode
setDistributionTables
setEnsembleTables
setSummaryTables
set_non_standard_property
to_data
to_json
- class pylipd.classes.publication.Publication[source]
Methods
addAuthor
addDataUrl
addUrl
add_non_standard_property
from_data
from_json
getAbstract
getAuthors
getCitation
getCiteKey
getDOI
getDataUrls
getFirstAuthor
getInstitution
getIssue
getJournal
getPages
getPublicationType
getPublisher
getReport
getTitle
getUrls
getVolume
getYear
get_all_non_standard_properties
get_non_standard_property
setAbstract
setAuthors
setCitation
setCiteKey
setDOI
setDataUrls
setFirstAuthor
setInstitution
setIssue
setJournal
setPages
setPublicationType
setPublisher
setReport
setTitle
setUrls
setVolume
setYear
set_non_standard_property
to_data
to_json
- static from_data(id, data) Publication [source]
- static from_json(data) Publication [source]
- class pylipd.classes.resolution.Resolution[source]
Methods
add_non_standard_property
from_data
from_json
getMaxValue
getMeanValue
getMedianValue
getMinValue
getUnits
get_all_non_standard_properties
get_non_standard_property
setMaxValue
setMeanValue
setMedianValue
setMinValue
setUnits
set_non_standard_property
to_data
to_json
- static from_data(id, data) Resolution [source]
- static from_json(data) Resolution [source]
- class pylipd.classes.physicalsample.PhysicalSample[source]
Methods
add_non_standard_property
from_data
from_json
getHousedAt
getIGSN
getName
get_all_non_standard_properties
get_non_standard_property
setHousedAt
setIGSN
setName
set_non_standard_property
to_data
to_json
- static from_data(id, data) PhysicalSample [source]
- static from_json(data) PhysicalSample [source]
LiPD Controlled Vocabulary
- class pylipd.classes.archivetype.ArchiveType(id, label)[source]
Methods
from_synonym
getId
getLabel
to_data
to_json
- synonyms = {'bivalve': {'id': 'http://linked.earth/ontology/archive#MolluskShell', 'label': 'Mollusk shell'}, 'bog': {'id': 'http://linked.earth/ontology/archive#Peat', 'label': 'Peat'}, 'borehole': {'id': 'http://linked.earth/ontology/archive#Borehole', 'label': 'Borehole'}, 'bulk ice': {'id': 'http://linked.earth/ontology/archive#GroundIce', 'label': 'Ground ice'}, 'cave': {'id': 'http://linked.earth/ontology/archive#Speleothem', 'label': 'Speleothem'}, 'coral': {'id': 'http://linked.earth/ontology/archive#Coral', 'label': 'Coral'}, 'creek': {'id': 'http://linked.earth/ontology/archive#FluvialSediment', 'label': 'Fluvial sediment'}, 'delta': {'id': 'http://linked.earth/ontology/archive#MarineSediment', 'label': 'Marine sediment'}, 'documents': {'id': 'http://linked.earth/ontology/archive#Documents', 'label': 'Documents'}, 'dune': {'id': 'http://linked.earth/ontology/archive#TerrestrialSediment', 'label': 'Terrestrial sediment'}, 'fen': {'id': 'http://linked.earth/ontology/archive#Peat', 'label': 'Peat'}, 'fluvial': {'id': 'http://linked.earth/ontology/archive#FluvialSediment', 'label': 'Fluvial sediment'}, 'fluvial sediment': {'id': 'http://linked.earth/ontology/archive#FluvialSediment', 'label': 'Fluvial sediment'}, 'fluvialsediment': {'id': 'http://linked.earth/ontology/archive#FluvialSediment', 'label': 'Fluvial sediment'}, 'glacier ice': {'id': 'http://linked.earth/ontology/archive#GlacierIce', 'label': 'Glacier ice'}, 'glacierice': {'id': 'http://linked.earth/ontology/archive#GlacierIce', 'label': 'Glacier ice'}, 'ground ice': {'id': 'http://linked.earth/ontology/archive#GroundIce', 'label': 'Ground ice'}, 'groundice': {'id': 'http://linked.earth/ontology/archive#GroundIce', 'label': 'Ground ice'}, 'ice cores': {'id': 'http://linked.earth/ontology/archive#GlacierIce', 'label': 'Glacier ice'}, 'lagoon': {'id': 'http://linked.earth/ontology/archive#LakeSediment', 'label': 'Lake sediment'}, 'lake': {'id': 'http://linked.earth/ontology/archive#LakeSediment', 'label': 'Lake sediment'}, 'lake levels': {'id': 'http://linked.earth/ontology/archive#Shoreline', 'label': 'Shoreline'}, 'lake sediment': {'id': 'http://linked.earth/ontology/archive#LakeSediment', 'label': 'Lake sediment'}, 'lakedeposit': {'id': 'http://linked.earth/ontology/archive#Shoreline', 'label': 'Shoreline'}, 'lakedeposits': {'id': 'http://linked.earth/ontology/archive#Shoreline', 'label': 'Shoreline'}, 'lakesediment': {'id': 'http://linked.earth/ontology/archive#LakeSediment', 'label': 'Lake sediment'}, 'loess': {'id': 'http://linked.earth/ontology/archive#TerrestrialSediment', 'label': 'Terrestrial sediment'}, 'marine': {'id': 'http://linked.earth/ontology/archive#MarineSediment', 'label': 'Marine sediment'}, 'marine sediment': {'id': 'http://linked.earth/ontology/archive#MarineSediment', 'label': 'Marine sediment'}, 'marinesediment': {'id': 'http://linked.earth/ontology/archive#MarineSediment', 'label': 'Marine sediment'}, 'marsh': {'id': 'http://linked.earth/ontology/archive#Peat', 'label': 'Peat'}, 'midden': {'id': 'http://linked.earth/ontology/archive#Midden', 'label': 'Midden'}, 'mire': {'id': 'http://linked.earth/ontology/archive#Peat', 'label': 'Peat'}, 'mollusk shell': {'id': 'http://linked.earth/ontology/archive#MolluskShell', 'label': 'Mollusk shell'}, 'molluskshell': {'id': 'http://linked.earth/ontology/archive#MolluskShell', 'label': 'Mollusk shell'}, 'molluskshells': {'id': 'http://linked.earth/ontology/archive#MolluskShell', 'label': 'Mollusk shell'}, 'other': {'id': 'http://linked.earth/ontology/archive#Other', 'label': 'Other'}, 'peat': {'id': 'http://linked.earth/ontology/archive#Peat', 'label': 'Peat'}, 'river': {'id': 'http://linked.earth/ontology/archive#FluvialSediment', 'label': 'Fluvial sediment'}, 'sclerosponge': {'id': 'http://linked.earth/ontology/archive#Sclerosponge', 'label': 'Sclerosponge'}, 'shoreline': {'id': 'http://linked.earth/ontology/archive#Shoreline', 'label': 'Shoreline'}, 'speleothem': {'id': 'http://linked.earth/ontology/archive#Speleothem', 'label': 'Speleothem'}, 'speleothems': {'id': 'http://linked.earth/ontology/archive#Speleothem', 'label': 'Speleothem'}, 'stream': {'id': 'http://linked.earth/ontology/archive#FluvialSediment', 'label': 'Fluvial sediment'}, 'swamp': {'id': 'http://linked.earth/ontology/archive#Peat', 'label': 'Peat'}, 'terrestrial sediment': {'id': 'http://linked.earth/ontology/archive#TerrestrialSediment', 'label': 'Terrestrial sediment'}, 'terrestrialsediment': {'id': 'http://linked.earth/ontology/archive#TerrestrialSediment', 'label': 'Terrestrial sediment'}, 'tree': {'id': 'http://linked.earth/ontology/archive#Wood', 'label': 'Wood'}, 'tree ring': {'id': 'http://linked.earth/ontology/archive#Wood', 'label': 'Wood'}, 'wood': {'id': 'http://linked.earth/ontology/archive#Wood', 'label': 'Wood'}}
- class pylipd.classes.archivetype.ArchiveTypeConstants[source]
- Borehole = <pylipd.classes.archivetype.ArchiveType object>
- Coral = <pylipd.classes.archivetype.ArchiveType object>
- Documents = <pylipd.classes.archivetype.ArchiveType object>
- FluvialSediment = <pylipd.classes.archivetype.ArchiveType object>
- GlacierIce = <pylipd.classes.archivetype.ArchiveType object>
- GroundIce = <pylipd.classes.archivetype.ArchiveType object>
- LakeSediment = <pylipd.classes.archivetype.ArchiveType object>
- MarineSediment = <pylipd.classes.archivetype.ArchiveType object>
- Midden = <pylipd.classes.archivetype.ArchiveType object>
- MolluskShell = <pylipd.classes.archivetype.ArchiveType object>
- Other = <pylipd.classes.archivetype.ArchiveType object>
- Peat = <pylipd.classes.archivetype.ArchiveType object>
- Sclerosponge = <pylipd.classes.archivetype.ArchiveType object>
- Shoreline = <pylipd.classes.archivetype.ArchiveType object>
- Speleothem = <pylipd.classes.archivetype.ArchiveType object>
- TerrestrialSediment = <pylipd.classes.archivetype.ArchiveType object>
- Wood = <pylipd.classes.archivetype.ArchiveType object>
- class pylipd.classes.paleounit.PaleoUnitConstants[source]
- SI = <pylipd.classes.paleounit.PaleoUnit object>
- atomic_ratio = <pylipd.classes.paleounit.PaleoUnit object>
- cgs = <pylipd.classes.paleounit.PaleoUnit object>
- cm = <pylipd.classes.paleounit.PaleoUnit object>
- cm3 = <pylipd.classes.paleounit.PaleoUnit object>
- cm_kyr = <pylipd.classes.paleounit.PaleoUnit object>
- cm_yr = <pylipd.classes.paleounit.PaleoUnit object>
- count = <pylipd.classes.paleounit.PaleoUnit object>
- count_century = <pylipd.classes.paleounit.PaleoUnit object>
- count_cm2 = <pylipd.classes.paleounit.PaleoUnit object>
- count_cm2_yr = <pylipd.classes.paleounit.PaleoUnit object>
- count_cm3 = <pylipd.classes.paleounit.PaleoUnit object>
- count_g = <pylipd.classes.paleounit.PaleoUnit object>
- count_kyr = <pylipd.classes.paleounit.PaleoUnit object>
- count_mL = <pylipd.classes.paleounit.PaleoUnit object>
- count_yr = <pylipd.classes.paleounit.PaleoUnit object>
- cps = <pylipd.classes.paleounit.PaleoUnit object>
- day = <pylipd.classes.paleounit.PaleoUnit object>
- degC = <pylipd.classes.paleounit.PaleoUnit object>
- degree = <pylipd.classes.paleounit.PaleoUnit object>
- fraction = <pylipd.classes.paleounit.PaleoUnit object>
- g = <pylipd.classes.paleounit.PaleoUnit object>
- g_L = <pylipd.classes.paleounit.PaleoUnit object>
- g_cm2 = <pylipd.classes.paleounit.PaleoUnit object>
- g_cm2_kyr = <pylipd.classes.paleounit.PaleoUnit object>
- g_cm2_yr = <pylipd.classes.paleounit.PaleoUnit object>
- g_cm3 = <pylipd.classes.paleounit.PaleoUnit object>
- g_cm_yr = <pylipd.classes.paleounit.PaleoUnit object>
- g_m2 = <pylipd.classes.paleounit.PaleoUnit object>
- g_m2_yr = <pylipd.classes.paleounit.PaleoUnit object>
- grayscale = <pylipd.classes.paleounit.PaleoUnit object>
- kg_m2_yr = <pylipd.classes.paleounit.PaleoUnit object>
- kg_m3 = <pylipd.classes.paleounit.PaleoUnit object>
- km2 = <pylipd.classes.paleounit.PaleoUnit object>
- km3 = <pylipd.classes.paleounit.PaleoUnit object>
- log_mg_L_ = <pylipd.classes.paleounit.PaleoUnit object>
- m = <pylipd.classes.paleounit.PaleoUnit object>
- m3_kg = <pylipd.classes.paleounit.PaleoUnit object>
- mg = <pylipd.classes.paleounit.PaleoUnit object>
- mg_L = <pylipd.classes.paleounit.PaleoUnit object>
- mg_cm2_yr = <pylipd.classes.paleounit.PaleoUnit object>
- mg_g = <pylipd.classes.paleounit.PaleoUnit object>
- mg_kg = <pylipd.classes.paleounit.PaleoUnit object>
- mm = <pylipd.classes.paleounit.PaleoUnit object>
- mm_day = <pylipd.classes.paleounit.PaleoUnit object>
- mm_season = <pylipd.classes.paleounit.PaleoUnit object>
- mm_yr = <pylipd.classes.paleounit.PaleoUnit object>
- mmol_mol = <pylipd.classes.paleounit.PaleoUnit object>
- months_year = <pylipd.classes.paleounit.PaleoUnit object>
- needsToBeChanged = <pylipd.classes.paleounit.PaleoUnit object>
- ng = <pylipd.classes.paleounit.PaleoUnit object>
- ng_g = <pylipd.classes.paleounit.PaleoUnit object>
- pH = <pylipd.classes.paleounit.PaleoUnit object>
- peak_area = <pylipd.classes.paleounit.PaleoUnit object>
- percent = <pylipd.classes.paleounit.PaleoUnit object>
- permil = <pylipd.classes.paleounit.PaleoUnit object>
- ppb = <pylipd.classes.paleounit.PaleoUnit object>
- ppm = <pylipd.classes.paleounit.PaleoUnit object>
- practical_salinity_unit = <pylipd.classes.paleounit.PaleoUnit object>
- ratio = <pylipd.classes.paleounit.PaleoUnit object>
- ug_cm2_yr = <pylipd.classes.paleounit.PaleoUnit object>
- ug_g = <pylipd.classes.paleounit.PaleoUnit object>
- um = <pylipd.classes.paleounit.PaleoUnit object>
- umol_mol = <pylipd.classes.paleounit.PaleoUnit object>
- unitless = <pylipd.classes.paleounit.PaleoUnit object>
- yr_14C_BP = <pylipd.classes.paleounit.PaleoUnit object>
- yr_AD = <pylipd.classes.paleounit.PaleoUnit object>
- yr_BP = <pylipd.classes.paleounit.PaleoUnit object>
- yr_b2k = <pylipd.classes.paleounit.PaleoUnit object>
- yr_ka = <pylipd.classes.paleounit.PaleoUnit object>
- z_score = <pylipd.classes.paleounit.PaleoUnit object>
- class pylipd.classes.paleoproxy.PaleoProxy(id, label)[source]
Methods
from_synonym
getId
getLabel
to_data
to_json
- synonyms = {'((( calcium carbonate ))) accumulation /// null': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, '15n/40ar fractionation': {'id': 'http://linked.earth/ontology/paleo_proxy#d15N_d40Ar', 'label': 'd15N/d40Ar'}, '3-oh-fatty acids': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'accumulation rate': {'id': 'http://linked.earth/ontology/paleo_proxy#accumulation_rate', 'label': 'accumulation rate'}, 'accumulation_rate': {'id': 'http://linked.earth/ontology/paleo_proxy#accumulation_rate', 'label': 'accumulation rate'}, 'acl': {'id': 'http://linked.earth/ontology/paleo_proxy#ACL', 'label': 'ACL'}, 'age': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'al2o3': {'id': 'http://linked.earth/ontology/paleo_proxy#Al2O3', 'label': 'Al2O3'}, 'alkenone': {'id': 'http://linked.earth/ontology/paleo_proxy#alkenone', 'label': 'alkenone'}, 'aluminum oxide': {'id': 'http://linked.earth/ontology/paleo_proxy#Al2O3', 'label': 'Al2O3'}, 'amoeba': {'id': 'http://linked.earth/ontology/paleo_proxy#amoeba', 'label': 'amoeba'}, 'aquatic palynomorphs': {'id': 'http://linked.earth/ontology/paleo_proxy#pollen', 'label': 'pollen'}, 'arm/irm': {'id': 'http://linked.earth/ontology/paleo_proxy#magnetic', 'label': 'magnetic'}, 'authigenic carbonate': {'id': 'http://linked.earth/ontology/paleo_proxy#carbonate', 'label': 'carbonate'}, 'average chain length': {'id': 'http://linked.earth/ontology/paleo_proxy#ACL', 'label': 'ACL'}, 'ba/al': {'id': 'http://linked.earth/ontology/paleo_proxy#Ba_Al', 'label': 'Ba/Al'}, 'ba/ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Ba_Ca', 'label': 'Ba/Ca'}, 'ba_al': {'id': 'http://linked.earth/ontology/paleo_proxy#Ba_Al', 'label': 'Ba/Al'}, 'ba_ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Ba_Ca', 'label': 'Ba/Ca'}, 'baca': {'id': 'http://linked.earth/ontology/paleo_proxy#Ba_Ca', 'label': 'Ba/Ca'}, 'barium/aluminum': {'id': 'http://linked.earth/ontology/paleo_proxy#Ba_Al', 'label': 'Ba/Al'}, 'barium/calcium': {'id': 'http://linked.earth/ontology/paleo_proxy#Ba_Ca', 'label': 'Ba/Ca'}, 'benthic foraminifers': {'id': 'http://linked.earth/ontology/paleo_proxy#foraminifera', 'label': 'foraminifera'}, 'biogenic silica': {'id': 'http://linked.earth/ontology/paleo_proxy#BSi', 'label': 'BSi'}, 'biomarker': {'id': 'http://linked.earth/ontology/paleo_proxy#biomarker', 'label': 'biomarker'}, 'bit': {'id': 'http://linked.earth/ontology/paleo_proxy#BIT', 'label': 'BIT'}, 'bitindex': {'id': 'http://linked.earth/ontology/paleo_proxy#BIT', 'label': 'BIT'}, 'borehole': {'id': 'http://linked.earth/ontology/paleo_proxy#borehole', 'label': 'borehole'}, 'branched and isoprenoid tetraether index': {'id': 'http://linked.earth/ontology/paleo_proxy#BIT', 'label': 'BIT'}, 'brgdgt': {'id': 'http://linked.earth/ontology/paleo_proxy#GDGT', 'label': 'GDGT'}, 'bsi': {'id': 'http://linked.earth/ontology/paleo_proxy#BSi', 'label': 'BSi'}, 'bubble frequency': {'id': 'http://linked.earth/ontology/paleo_proxy#bubble_frequency', 'label': 'bubble frequency'}, 'bubble_frequency': {'id': 'http://linked.earth/ontology/paleo_proxy#bubble_frequency', 'label': 'bubble frequency'}, 'bulk density': {'id': 'http://linked.earth/ontology/paleo_proxy#bulk_density', 'label': 'bulk density'}, 'bulk sediment': {'id': 'http://linked.earth/ontology/paleo_proxy#bulk_sediment', 'label': 'bulk sediment'}, 'bulk_density': {'id': 'http://linked.earth/ontology/paleo_proxy#bulk_density', 'label': 'bulk density'}, 'bulk_sediment': {'id': 'http://linked.earth/ontology/paleo_proxy#bulk_sediment', 'label': 'bulk sediment'}, 'bulksed': {'id': 'http://linked.earth/ontology/paleo_proxy#bulk_sediment', 'label': 'bulk sediment'}, 'c/n': {'id': 'http://linked.earth/ontology/paleo_proxy#C_N', 'label': 'C/N'}, 'c15 fatty alcohols': {'id': 'http://linked.earth/ontology/paleo_proxy#biomarker', 'label': 'biomarker'}, 'c37.concentration': {'id': 'http://linked.earth/ontology/paleo_proxy#biomarker', 'label': 'biomarker'}, 'c_n': {'id': 'http://linked.earth/ontology/paleo_proxy#C_N', 'label': 'C/N'}, 'ca': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'ca/k': {'id': 'http://linked.earth/ontology/paleo_proxy#Ca_K', 'label': 'Ca/K'}, 'ca/sr': {'id': 'http://linked.earth/ontology/paleo_proxy#Sr_Ca', 'label': 'Sr/Ca'}, 'ca/ti': {'id': 'http://linked.earth/ontology/paleo_proxy#Ca_Ti', 'label': 'Ca/Ti'}, 'ca_k': {'id': 'http://linked.earth/ontology/paleo_proxy#Ca_K', 'label': 'Ca/K'}, 'ca_ti': {'id': 'http://linked.earth/ontology/paleo_proxy#Ca_Ti', 'label': 'Ca/Ti'}, 'caco3': {'id': 'http://linked.earth/ontology/paleo_proxy#CaCO3', 'label': 'CaCO3'}, 'calcification': {'id': 'http://linked.earth/ontology/paleo_proxy#calcification_rate', 'label': 'calcification rate'}, 'calcification rate': {'id': 'http://linked.earth/ontology/paleo_proxy#calcification_rate', 'label': 'calcification rate'}, 'calcification_rate': {'id': 'http://linked.earth/ontology/paleo_proxy#calcification_rate', 'label': 'calcification rate'}, 'calcite': {'id': 'http://linked.earth/ontology/paleo_proxy#calcite', 'label': 'calcite'}, 'calcium carbonate': {'id': 'http://linked.earth/ontology/paleo_proxy#CaCO3', 'label': 'CaCO3'}, 'calcium/potassium': {'id': 'http://linked.earth/ontology/paleo_proxy#Ca_K', 'label': 'Ca/K'}, 'calcium/titanium': {'id': 'http://linked.earth/ontology/paleo_proxy#Ca_Ti', 'label': 'Ca/Ti'}, 'carbon/nitrogen': {'id': 'http://linked.earth/ontology/paleo_proxy#C_N', 'label': 'C/N'}, 'carbonate': {'id': 'http://linked.earth/ontology/paleo_proxy#carbonate', 'label': 'carbonate'}, 'carbonate content': {'id': 'http://linked.earth/ontology/paleo_proxy#carbonate', 'label': 'carbonate'}, 'cas': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'cellulose': {'id': 'http://linked.earth/ontology/paleo_proxy#cellulose', 'label': 'cellulose'}, 'cellulose d18o': {'id': 'http://linked.earth/ontology/paleo_proxy#d18O', 'label': 'd18O'}, 'charcoal': {'id': 'http://linked.earth/ontology/paleo_proxy#charcoal', 'label': 'charcoal'}, 'chironomid': {'id': 'http://linked.earth/ontology/paleo_proxy#chironomid', 'label': 'chironomid'}, 'chlorophyll': {'id': 'http://linked.earth/ontology/paleo_proxy#chlorophyll', 'label': 'chlorophyll'}, 'chrysophyte': {'id': 'http://linked.earth/ontology/paleo_proxy#chrysophyte_assemblage', 'label': 'chrysophyte assemblage'}, 'chrysophyte assemblage': {'id': 'http://linked.earth/ontology/paleo_proxy#chrysophyte_assemblage', 'label': 'chrysophyte assemblage'}, 'chrysophyte_assemblage': {'id': 'http://linked.earth/ontology/paleo_proxy#chrysophyte_assemblage', 'label': 'chrysophyte assemblage'}, 'cia': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'cladocera': {'id': 'http://linked.earth/ontology/paleo_proxy#cladoceran', 'label': 'cladoceran'}, 'cladoceran': {'id': 'http://linked.earth/ontology/paleo_proxy#cladoceran', 'label': 'cladoceran'}, 'coccolith': {'id': 'http://linked.earth/ontology/paleo_proxy#coccolithophore', 'label': 'coccolithophore'}, 'coccolithophore': {'id': 'http://linked.earth/ontology/paleo_proxy#coccolithophore', 'label': 'coccolithophore'}, 'coral': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'coral sr/ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Sr_Ca', 'label': 'Sr/Ca'}, 'd13c': {'id': 'http://linked.earth/ontology/paleo_proxy#d13C', 'label': 'd13C'}, 'd13cwax': {'id': 'http://linked.earth/ontology/paleo_proxy#d13C', 'label': 'd13C'}, 'd15n': {'id': 'http://linked.earth/ontology/paleo_proxy#d15N', 'label': 'd15N'}, 'd15n/d40ar': {'id': 'http://linked.earth/ontology/paleo_proxy#d15N_d40Ar', 'label': 'd15N/d40Ar'}, 'd15n_d40ar': {'id': 'http://linked.earth/ontology/paleo_proxy#d15N_d40Ar', 'label': 'd15N/d40Ar'}, 'd15nd40ar': {'id': 'http://linked.earth/ontology/paleo_proxy#d15N_d40Ar', 'label': 'd15N/d40Ar'}, 'd18o': {'id': 'http://linked.earth/ontology/paleo_proxy#d18O', 'label': 'd18O'}, 'd2h': {'id': 'http://linked.earth/ontology/paleo_proxy#dD', 'label': 'dD'}, 'dbd': {'id': 'http://linked.earth/ontology/paleo_proxy#dry_bulk_density', 'label': 'dry bulk density'}, 'dd': {'id': 'http://linked.earth/ontology/paleo_proxy#dD', 'label': 'dD'}, 'ddwax': {'id': 'http://linked.earth/ontology/paleo_proxy#dD', 'label': 'dD'}, 'delta 13c': {'id': 'http://linked.earth/ontology/paleo_proxy#d13C', 'label': 'd13C'}, 'delta 15n': {'id': 'http://linked.earth/ontology/paleo_proxy#d15N', 'label': 'd15N'}, 'delta 18o': {'id': 'http://linked.earth/ontology/paleo_proxy#d18O', 'label': 'd18O'}, 'delta 2h': {'id': 'http://linked.earth/ontology/paleo_proxy#dD', 'label': 'dD'}, 'delta density': {'id': 'http://linked.earth/ontology/paleo_proxy#maximum_latewood_density', 'label': 'maximum latewood density'}, 'delta18o': {'id': 'http://linked.earth/ontology/paleo_proxy#d18O', 'label': 'd18O'}, 'deterium excess': {'id': 'http://linked.earth/ontology/paleo_proxy#deuterium_excess', 'label': 'deuterium excess'}, 'deuterium excess': {'id': 'http://linked.earth/ontology/paleo_proxy#deuterium_excess', 'label': 'deuterium excess'}, 'deuterium_excess': {'id': 'http://linked.earth/ontology/paleo_proxy#deuterium_excess', 'label': 'deuterium excess'}, 'diatom': {'id': 'http://linked.earth/ontology/paleo_proxy#diatom', 'label': 'diatom'}, 'dinocyst': {'id': 'http://linked.earth/ontology/paleo_proxy#dinocyst', 'label': 'dinocyst'}, 'dinoflagellate': {'id': 'http://linked.earth/ontology/paleo_proxy#dinocyst', 'label': 'dinocyst'}, 'documentary': {'id': 'http://linked.earth/ontology/paleo_proxy#historical', 'label': 'historical'}, 'dry bulk density': {'id': 'http://linked.earth/ontology/paleo_proxy#dry_bulk_density', 'label': 'dry bulk density'}, 'dry sediment': {'id': 'http://linked.earth/ontology/paleo_proxy#bulk_sediment', 'label': 'bulk sediment'}, 'dry_bulk_density': {'id': 'http://linked.earth/ontology/paleo_proxy#dry_bulk_density', 'label': 'dry bulk density'}, 'dx': {'id': 'http://linked.earth/ontology/paleo_proxy#deuterium_excess', 'label': 'deuterium excess'}, 'dynocist mat': {'id': 'http://linked.earth/ontology/paleo_proxy#dinocyst', 'label': 'dinocyst'}, 'element': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'element ratio': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'eu/zr': {'id': 'http://linked.earth/ontology/paleo_proxy#Eu_Zr', 'label': 'Eu/Zr'}, 'eu_zr': {'id': 'http://linked.earth/ontology/paleo_proxy#Eu_Zr', 'label': 'Eu/Zr'}, 'fe': {'id': 'http://linked.earth/ontology/paleo_proxy#Fe', 'label': 'Fe'}, 'fe/al': {'id': 'http://linked.earth/ontology/paleo_proxy#Fe_Al', 'label': 'Fe/Al'}, 'fe_al': {'id': 'http://linked.earth/ontology/paleo_proxy#Fe_Al', 'label': 'Fe/Al'}, 'foram d18o': {'id': 'http://linked.earth/ontology/paleo_proxy#d18O', 'label': 'd18O'}, 'foram mg/ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Mg_Ca', 'label': 'Mg/Ca'}, 'foraminifer': {'id': 'http://linked.earth/ontology/paleo_proxy#foraminifera', 'label': 'foraminifera'}, 'foraminifera': {'id': 'http://linked.earth/ontology/paleo_proxy#foraminifera', 'label': 'foraminifera'}, 'gamma': {'id': 'http://linked.earth/ontology/paleo_proxy#bulk_density', 'label': 'bulk density'}, 'gdgt': {'id': 'http://linked.earth/ontology/paleo_proxy#GDGT', 'label': 'GDGT'}, 'glycerol dialkyl glycerol tetraether': {'id': 'http://linked.earth/ontology/paleo_proxy#GDGT', 'label': 'GDGT'}, 'grain size': {'id': 'http://linked.earth/ontology/paleo_proxy#grain_size', 'label': 'grain size'}, 'grain_size': {'id': 'http://linked.earth/ontology/paleo_proxy#grain_size', 'label': 'grain size'}, 'hbi': {'id': 'http://linked.earth/ontology/paleo_proxy#HBI', 'label': 'HBI'}, 'highly-branched isoprenoid alkene': {'id': 'http://linked.earth/ontology/paleo_proxy#HBI', 'label': 'HBI'}, 'historic': {'id': 'http://linked.earth/ontology/paleo_proxy#historical', 'label': 'historical'}, 'historical': {'id': 'http://linked.earth/ontology/paleo_proxy#historical', 'label': 'historical'}, 'humification': {'id': 'http://linked.earth/ontology/paleo_proxy#humification', 'label': 'humification'}, 'humification index': {'id': 'http://linked.earth/ontology/paleo_proxy#humification', 'label': 'humification'}, 'hybrid': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'hybrid grain size': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'hybrid-ice': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'hybrid-lake': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'ice': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'ice accumulation': {'id': 'http://linked.earth/ontology/paleo_proxy#ice_accumulation', 'label': 'ice accumulation'}, 'ice melt': {'id': 'http://linked.earth/ontology/paleo_proxy#ice_melt', 'label': 'ice melt'}, 'ice proxy with 25 carbon atoms': {'id': 'http://linked.earth/ontology/paleo_proxy#IP25', 'label': 'IP25'}, 'ice_accumulation': {'id': 'http://linked.earth/ontology/paleo_proxy#ice_accumulation', 'label': 'ice accumulation'}, 'ice_melt': {'id': 'http://linked.earth/ontology/paleo_proxy#ice_melt', 'label': 'ice melt'}, 'inorganic carbon': {'id': 'http://linked.earth/ontology/paleo_proxy#inorganic_carbon', 'label': 'inorganic carbon'}, 'inorganic_carbon': {'id': 'http://linked.earth/ontology/paleo_proxy#inorganic_carbon', 'label': 'inorganic carbon'}, 'ip25': {'id': 'http://linked.earth/ontology/paleo_proxy#IP25', 'label': 'IP25'}, 'irm': {'id': 'http://linked.earth/ontology/paleo_proxy#magnetic', 'label': 'magnetic'}, 'iron': {'id': 'http://linked.earth/ontology/paleo_proxy#Fe', 'label': 'Fe'}, 'iron/aluminum': {'id': 'http://linked.earth/ontology/paleo_proxy#Fe_Al', 'label': 'Fe/Al'}, 'isotope': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'isotope diffusion': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'k': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'lake level': {'id': 'http://linked.earth/ontology/paleo_proxy#lake_level', 'label': 'lake level'}, 'lake stratigraphy and radiocarbon dating of macrofossils': {'id': 'http://linked.earth/ontology/paleo_proxy#lake_level', 'label': 'lake level'}, 'lake_level': {'id': 'http://linked.earth/ontology/paleo_proxy#lake_level', 'label': 'lake level'}, 'lakelevel': {'id': 'http://linked.earth/ontology/paleo_proxy#lake_level', 'label': 'lake level'}, 'lakestatus': {'id': 'http://linked.earth/ontology/paleo_proxy#lake_level', 'label': 'lake level'}, 'late-wood cellulose': {'id': 'http://linked.earth/ontology/paleo_proxy#latewood_cellulose', 'label': 'latewood cellulose'}, 'latewood cellulose': {'id': 'http://linked.earth/ontology/paleo_proxy#latewood_cellulose', 'label': 'latewood cellulose'}, 'latewood density': {'id': 'http://linked.earth/ontology/paleo_proxy#maximum_latewood_density', 'label': 'maximum latewood density'}, 'latewood_cellulose': {'id': 'http://linked.earth/ontology/paleo_proxy#latewood_cellulose', 'label': 'latewood cellulose'}, 'ldi': {'id': 'http://linked.earth/ontology/paleo_proxy#LDI', 'label': 'LDI'}, 'leaf wax': {'id': 'http://linked.earth/ontology/paleo_proxy#dD', 'label': 'dD'}, 'leafwax': {'id': 'http://linked.earth/ontology/paleo_proxy#dD', 'label': 'dD'}, 'ln(ti/ca)': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti_Ca', 'label': 'Ti/Ca'}, 'long chain diol': {'id': 'http://linked.earth/ontology/paleo_proxy#LDI', 'label': 'LDI'}, 'long-chain diol index': {'id': 'http://linked.earth/ontology/paleo_proxy#LDI', 'label': 'LDI'}, 'macrofossils': {'id': 'http://linked.earth/ontology/paleo_proxy#macrofossils', 'label': 'macrofossils'}, 'magnesium': {'id': 'http://linked.earth/ontology/paleo_proxy#Mg', 'label': 'Mg'}, 'magnesium/calcium': {'id': 'http://linked.earth/ontology/paleo_proxy#Mg_Ca', 'label': 'Mg/Ca'}, 'magnetic': {'id': 'http://linked.earth/ontology/paleo_proxy#magnetic', 'label': 'magnetic'}, 'magnetic susceptibility': {'id': 'http://linked.earth/ontology/paleo_proxy#magnetic_susceptibility', 'label': 'magnetic susceptibility'}, 'magnetic_susceptibility': {'id': 'http://linked.earth/ontology/paleo_proxy#magnetic_susceptibility', 'label': 'magnetic susceptibility'}, 'mar': {'id': 'http://linked.earth/ontology/paleo_proxy#mass_accumulation_rate', 'label': 'mass accumulation rate'}, 'mass accumulation rate': {'id': 'http://linked.earth/ontology/paleo_proxy#mass_accumulation_rate', 'label': 'mass accumulation rate'}, 'mass per area per time unit': {'id': 'http://linked.earth/ontology/paleo_proxy#mass_accumulation_rate', 'label': 'mass accumulation rate'}, 'mass_accumulation_rate': {'id': 'http://linked.earth/ontology/paleo_proxy#mass_accumulation_rate', 'label': 'mass accumulation rate'}, 'maximum latewood density': {'id': 'http://linked.earth/ontology/paleo_proxy#maximum_latewood_density', 'label': 'maximum latewood density'}, 'maximum_latewood_density': {'id': 'http://linked.earth/ontology/paleo_proxy#maximum_latewood_density', 'label': 'maximum latewood density'}, 'melt': {'id': 'http://linked.earth/ontology/paleo_proxy#ice_melt', 'label': 'ice melt'}, 'melt layer': {'id': 'http://linked.earth/ontology/paleo_proxy#ice_melt', 'label': 'ice melt'}, 'mg': {'id': 'http://linked.earth/ontology/paleo_proxy#Mg', 'label': 'Mg'}, 'mg/ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Mg_Ca', 'label': 'Mg/Ca'}, 'mg0': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'mg_ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Mg_Ca', 'label': 'Mg/Ca'}, 'mgca': {'id': 'http://linked.earth/ontology/paleo_proxy#Mg_Ca', 'label': 'Mg/Ca'}, 'middle-wood cellulose': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'midge': {'id': 'http://linked.earth/ontology/paleo_proxy#chironomid', 'label': 'chironomid'}, 'mineral': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'mineralogy': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'minerogenic layers': {'id': 'http://linked.earth/ontology/paleo_proxy#stratigraphy', 'label': 'stratigraphy'}, 'ms': {'id': 'http://linked.earth/ontology/paleo_proxy#magnetic_susceptibility', 'label': 'magnetic susceptibility'}, 'multiple proxies': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'multiproxy': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'mxd': {'id': 'http://linked.earth/ontology/paleo_proxy#maximum_latewood_density', 'label': 'maximum latewood density'}, 'n. dutertrei': {'id': 'http://linked.earth/ontology/paleo_proxy#foraminifera', 'label': 'foraminifera'}, 'needs to be changed': {'id': 'http://linked.earth/ontology/paleo_proxy#needs_to_be_changed', 'label': 'needs to be changed'}, 'needs_to_be_changed': {'id': 'http://linked.earth/ontology/paleo_proxy#needs_to_be_changed', 'label': 'needs to be changed'}, 'needstobechanged': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'organic carbon': {'id': 'http://linked.earth/ontology/paleo_proxy#TOC', 'label': 'TOC'}, 'organic compound': {'id': 'http://linked.earth/ontology/paleo_proxy#biomarker', 'label': 'biomarker'}, 'ostracod': {'id': 'http://linked.earth/ontology/paleo_proxy#ostracod', 'label': 'ostracod'}, 'p-aqueous': {'id': 'http://linked.earth/ontology/paleo_proxy#P-aqueous', 'label': 'P-aqueous'}, 'paq': {'id': 'http://linked.earth/ontology/paleo_proxy#P-aqueous', 'label': 'P-aqueous'}, 'particle size': {'id': 'http://linked.earth/ontology/paleo_proxy#grain_size', 'label': 'grain size'}, 'pca': {'id': 'http://linked.earth/ontology/paleo_proxy#needs_to_be_changed', 'label': 'needs to be changed'}, 'peat ash': {'id': 'http://linked.earth/ontology/paleo_proxy#peat_ash', 'label': 'peat ash'}, 'peat_ash': {'id': 'http://linked.earth/ontology/paleo_proxy#peat_ash', 'label': 'peat ash'}, 'percent': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'ph': {'id': 'http://linked.earth/ontology/paleo_proxy#pH', 'label': 'pH'}, 'planktonic foraminifera': {'id': 'http://linked.earth/ontology/paleo_proxy#foraminifera', 'label': 'foraminifera'}, 'plant detrital layers': {'id': 'http://linked.earth/ontology/paleo_proxy#stratigraphy', 'label': 'stratigraphy'}, 'plant macrofossils': {'id': 'http://linked.earth/ontology/paleo_proxy#macrofossils', 'label': 'macrofossils'}, 'pollen': {'id': 'http://linked.earth/ontology/paleo_proxy#pollen', 'label': 'pollen'}, 'pore ice d2h and d18o': {'id': 'http://linked.earth/ontology/paleo_proxy#multiproxy', 'label': 'multiproxy'}, 'radiolaria': {'id': 'http://linked.earth/ontology/paleo_proxy#radiolaria', 'label': 'radiolaria'}, 'radiolarian': {'id': 'http://linked.earth/ontology/paleo_proxy#radiolaria', 'label': 'radiolaria'}, 'rb': {'id': 'http://linked.earth/ontology/paleo_proxy#Rb', 'label': 'Rb'}, 'rb/sr': {'id': 'http://linked.earth/ontology/paleo_proxy#Rb_Sr', 'label': 'Rb/Sr'}, 'rb_sr': {'id': 'http://linked.earth/ontology/paleo_proxy#Rb_Sr', 'label': 'Rb/Sr'}, 'reflectance': {'id': 'http://linked.earth/ontology/paleo_proxy#reflectance', 'label': 'reflectance'}, 'ring width': {'id': 'http://linked.earth/ontology/paleo_proxy#ring_width', 'label': 'ring width'}, 'ring_width': {'id': 'http://linked.earth/ontology/paleo_proxy#ring_width', 'label': 'ring width'}, 'rubidium': {'id': 'http://linked.earth/ontology/paleo_proxy#Rb', 'label': 'Rb'}, 's': {'id': 'http://linked.earth/ontology/paleo_proxy#sulfur', 'label': 'sulfur'}, 'sed accumulation': {'id': 'http://linked.earth/ontology/paleo_proxy#accumulation_rate', 'label': 'accumulation rate'}, 'sediment': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'sr': {'id': 'http://linked.earth/ontology/paleo_proxy#Sr', 'label': 'Sr'}, 'sr/ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Sr_Ca', 'label': 'Sr/Ca'}, 'sr_ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Sr_Ca', 'label': 'Sr/Ca'}, 'srca': {'id': 'http://linked.earth/ontology/paleo_proxy#Sr_Ca', 'label': 'Sr/Ca'}, 'stratigraphy': {'id': 'http://linked.earth/ontology/paleo_proxy#stratigraphy', 'label': 'stratigraphy'}, 'strontium': {'id': 'http://linked.earth/ontology/paleo_proxy#Sr', 'label': 'Sr'}, 'strontium/calcium': {'id': 'http://linked.earth/ontology/paleo_proxy#Sr_Ca', 'label': 'Sr/Ca'}, 'sulfur': {'id': 'http://linked.earth/ontology/paleo_proxy#sulfur', 'label': 'sulfur'}, 'tds': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'testate amoeba': {'id': 'http://linked.earth/ontology/paleo_proxy#amoeba', 'label': 'amoeba'}, 'tetraether index of 86 carbon atoms': {'id': 'http://linked.earth/ontology/paleo_proxy#TEX86', 'label': 'TEX86'}, 'tex86': {'id': 'http://linked.earth/ontology/paleo_proxy#TEX86', 'label': 'TEX86'}, 'ti': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti', 'label': 'Ti'}, 'ti/al': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti_Al', 'label': 'Ti/Al'}, 'ti/ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti_Ca', 'label': 'Ti/Ca'}, 'ti_al': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti_Al', 'label': 'Ti/Al'}, 'ti_ca': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti_Ca', 'label': 'Ti/Ca'}, 'tic': {'id': 'http://linked.earth/ontology/paleo_proxy#inorganic_carbon', 'label': 'inorganic carbon'}, 'titanium': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti', 'label': 'Ti'}, 'titanium/aluminum': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti_Al', 'label': 'Ti/Al'}, 'titanium/calcium': {'id': 'http://linked.earth/ontology/paleo_proxy#Ti_Ca', 'label': 'Ti/Ca'}, 'tn': {'id': 'http://linked.earth/ontology/paleo_proxy#total_nitrogen', 'label': 'total nitrogen'}, 'toc': {'id': 'http://linked.earth/ontology/paleo_proxy#TOC', 'label': 'TOC'}, 'total nitrogen': {'id': 'http://linked.earth/ontology/paleo_proxy#total_nitrogen', 'label': 'total nitrogen'}, 'total_nitrogen': {'id': 'http://linked.earth/ontology/paleo_proxy#total_nitrogen', 'label': 'total nitrogen'}, 'trace element / ca': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'traceelement': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'transfer function': {'id': 'http://linked.earth/ontology/paleo_proxy#foraminifera', 'label': 'foraminifera'}, 'trw': {'id': 'http://linked.earth/ontology/paleo_proxy#ring_width', 'label': 'ring width'}, 'u cluster 2': {'id': 'http://linked.earth/ontology/paleo_proxy#needsToBeChanged', 'label': 'needsToBeChanged'}, 'uvigerina mediterranea': {'id': 'http://linked.earth/ontology/paleo_proxy#foraminifera', 'label': 'foraminifera'}, 'varve': {'id': 'http://linked.earth/ontology/paleo_proxy#varve_thickness', 'label': 'varve thickness'}, 'varve property': {'id': 'http://linked.earth/ontology/paleo_proxy#varve_thickness', 'label': 'varve thickness'}, 'varve thickness': {'id': 'http://linked.earth/ontology/paleo_proxy#varve_thickness', 'label': 'varve thickness'}, 'varve_thickness': {'id': 'http://linked.earth/ontology/paleo_proxy#varve_thickness', 'label': 'varve thickness'}, 'varves': {'id': 'http://linked.earth/ontology/paleo_proxy#varve_thickness', 'label': 'varve thickness'}}
- class pylipd.classes.paleoproxy.PaleoProxyConstants[source]
- ACL = <pylipd.classes.paleoproxy.PaleoProxy object>
- Al2O3 = <pylipd.classes.paleoproxy.PaleoProxy object>
- BIT = <pylipd.classes.paleoproxy.PaleoProxy object>
- BSi = <pylipd.classes.paleoproxy.PaleoProxy object>
- Ba_Al = <pylipd.classes.paleoproxy.PaleoProxy object>
- Ba_Ca = <pylipd.classes.paleoproxy.PaleoProxy object>
- C_N = <pylipd.classes.paleoproxy.PaleoProxy object>
- CaCO3 = <pylipd.classes.paleoproxy.PaleoProxy object>
- Ca_K = <pylipd.classes.paleoproxy.PaleoProxy object>
- Ca_Ti = <pylipd.classes.paleoproxy.PaleoProxy object>
- Eu_Zr = <pylipd.classes.paleoproxy.PaleoProxy object>
- Fe = <pylipd.classes.paleoproxy.PaleoProxy object>
- Fe_Al = <pylipd.classes.paleoproxy.PaleoProxy object>
- GDGT = <pylipd.classes.paleoproxy.PaleoProxy object>
- HBI = <pylipd.classes.paleoproxy.PaleoProxy object>
- IP25 = <pylipd.classes.paleoproxy.PaleoProxy object>
- LDI = <pylipd.classes.paleoproxy.PaleoProxy object>
- Mg = <pylipd.classes.paleoproxy.PaleoProxy object>
- Mg_Ca = <pylipd.classes.paleoproxy.PaleoProxy object>
- P_aqueous = <pylipd.classes.paleoproxy.PaleoProxy object>
- Rb = <pylipd.classes.paleoproxy.PaleoProxy object>
- Rb_Sr = <pylipd.classes.paleoproxy.PaleoProxy object>
- Sr = <pylipd.classes.paleoproxy.PaleoProxy object>
- Sr_Ca = <pylipd.classes.paleoproxy.PaleoProxy object>
- TEX86 = <pylipd.classes.paleoproxy.PaleoProxy object>
- TOC = <pylipd.classes.paleoproxy.PaleoProxy object>
- Ti = <pylipd.classes.paleoproxy.PaleoProxy object>
- Ti_Al = <pylipd.classes.paleoproxy.PaleoProxy object>
- Ti_Ca = <pylipd.classes.paleoproxy.PaleoProxy object>
- accumulation_rate = <pylipd.classes.paleoproxy.PaleoProxy object>
- alkenone = <pylipd.classes.paleoproxy.PaleoProxy object>
- amoeba = <pylipd.classes.paleoproxy.PaleoProxy object>
- biomarker = <pylipd.classes.paleoproxy.PaleoProxy object>
- borehole = <pylipd.classes.paleoproxy.PaleoProxy object>
- bubble_frequency = <pylipd.classes.paleoproxy.PaleoProxy object>
- bulk_density = <pylipd.classes.paleoproxy.PaleoProxy object>
- bulk_sediment = <pylipd.classes.paleoproxy.PaleoProxy object>
- calcification_rate = <pylipd.classes.paleoproxy.PaleoProxy object>
- calcite = <pylipd.classes.paleoproxy.PaleoProxy object>
- carbonate = <pylipd.classes.paleoproxy.PaleoProxy object>
- cellulose = <pylipd.classes.paleoproxy.PaleoProxy object>
- charcoal = <pylipd.classes.paleoproxy.PaleoProxy object>
- chironomid = <pylipd.classes.paleoproxy.PaleoProxy object>
- chlorophyll = <pylipd.classes.paleoproxy.PaleoProxy object>
- chrysophyte_assemblage = <pylipd.classes.paleoproxy.PaleoProxy object>
- cladoceran = <pylipd.classes.paleoproxy.PaleoProxy object>
- coccolithophore = <pylipd.classes.paleoproxy.PaleoProxy object>
- d13C = <pylipd.classes.paleoproxy.PaleoProxy object>
- d15N = <pylipd.classes.paleoproxy.PaleoProxy object>
- d15N_d40Ar = <pylipd.classes.paleoproxy.PaleoProxy object>
- d18O = <pylipd.classes.paleoproxy.PaleoProxy object>
- dD = <pylipd.classes.paleoproxy.PaleoProxy object>
- deuterium_excess = <pylipd.classes.paleoproxy.PaleoProxy object>
- diatom = <pylipd.classes.paleoproxy.PaleoProxy object>
- dinocyst = <pylipd.classes.paleoproxy.PaleoProxy object>
- dry_bulk_density = <pylipd.classes.paleoproxy.PaleoProxy object>
- foraminifera = <pylipd.classes.paleoproxy.PaleoProxy object>
- grain_size = <pylipd.classes.paleoproxy.PaleoProxy object>
- historical = <pylipd.classes.paleoproxy.PaleoProxy object>
- humification = <pylipd.classes.paleoproxy.PaleoProxy object>
- ice_accumulation = <pylipd.classes.paleoproxy.PaleoProxy object>
- ice_melt = <pylipd.classes.paleoproxy.PaleoProxy object>
- inorganic_carbon = <pylipd.classes.paleoproxy.PaleoProxy object>
- lake_level = <pylipd.classes.paleoproxy.PaleoProxy object>
- latewood_cellulose = <pylipd.classes.paleoproxy.PaleoProxy object>
- macrofossils